Atjaunināt sīkdatņu piekrišanu

Rogawski's Calculus Early Transcendentals for Ap* & Student Guide for Ap(r) Calculus Redesign 2nd ed. [Multiple-component retail product]

  • Formāts: Multiple-component retail product, height x width x depth: 274x224x51 mm, weight: 2517 g, Contains 1 Other merchandise
  • Izdošanas datums: 05-Aug-2016
  • Izdevniecība: W. H. Freeman
  • ISBN-10: 1319086934
  • ISBN-13: 9781319086930
Citas grāmatas par šo tēmu:
  • Multiple-component retail product
  • Cena: 263,09 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Multiple-component retail product, height x width x depth: 274x224x51 mm, weight: 2517 g, Contains 1 Other merchandise
  • Izdošanas datums: 05-Aug-2016
  • Izdevniecība: W. H. Freeman
  • ISBN-10: 1319086934
  • ISBN-13: 9781319086930
Citas grāmatas par šo tēmu:
Chapter 1 Precalculus Review
1(58)
1.1 Real Numbers, Functions, and Graphs
1(12)
1.2 Linear and Quadratic Functions
13(8)
1.3 The Basic Classes of Functions
21(4)
1.4 Trigonometric Functions
25(8)
1.5 Inverse Functions
33(10)
1.6 Exponential and Logarithmic Functions
43(8)
1.7 Technology: Calculators and Computers
51(8)
Chapter 2 Limits
59(61)
2.1 Limits, Rates of Change, and Tangent Lines
59(8)
2.2 Limits: A Numerical and Graphical Approach
67(10)
2.3 Basic Limit Laws
77(4)
2.4 Limits and Continuity
81(9)
2.5 Evaluating Limits Algebraically
90(5)
2.6 Trigonometric Limits
95(5)
2.7 Limits at Infinity
100(6)
2.8 Intermediate Value Theorem
106(4)
2.9 The Formal Definition of a Limit
110(10)
Preparing for the AP Exam
1(119)
Chapter 3 Differentiation
120(87)
3.1 Definition of the Derivative
120(9)
3.2 The Derivative as a Function
129(14)
3.3 Product and Quotient Rules
143(7)
3.4 Rates of Change
150(9)
3.5 Higher Derivatives
159(6)
3.6 Trigonometric Functions
165(4)
3.7 The Chain Rule
169(9)
3.8 Derivatives of Inverse Functions
178(4)
3.9 Derivatives of General Exponential and Logarithmic Functions
182(6)
3.10 Implicit Differentiation
188(7)
3.11 Related Rates
195(12)
Preparing for the AP Exam
1(206)
Chapter 4 Applications Of The Derivative
207(79)
4.1 Linear Approximation and Applications
207(8)
4.2 Extreme Values
215(11)
4.3 The Mean Value Theorem and Monotonicity
226(8)
4.4 The Shape of a Graph
234(7)
4.5 L'Hopital's Rule
241(7)
4.6 Graph Sketching and Asymptotes
248(9)
4.7 Applied Optimization
257(12)
4.8 Newton's Method
269(6)
4.9 Antiderivatives
275(11)
Preparing for the AP Exam
1(285)
Chapter 5 The Integral
286(71)
5.1 Approximating and Computing Area
286(13)
5.2 The Definite Integral
299(10)
5.3 The Fundamental Theorem of Calculus, Part I
309(7)
5.4 The Fundamental Theorem of Calculus, Part II
316(6)
5.5 Net Change as the Integral of a Rate
322(6)
5.6 Substitution Method
328(8)
5.7 Further Transcendental Functions
336(5)
5.8 Exponential Growth and Decay
341(16)
Preparing for the AP Exam
1(356)
Chapter 6 Applications Of The Integral
357(43)
6.1 Area Between Two Curves
357(8)
6.2 Setting Up Integrals: Volume, Density, Average Value
365(10)
6.3 Volumes of Revolution
375(9)
6.4 The Method of Cylindrical Shells
384(7)
6.5 Work and Energy
391(9)
Preparing for the AP Exam
1(399)
Chapter 7 Techniques Of Integration
400(67)
7.1 Integration by Parts
400(5)
7.2 Trigonometric Integrals
405(8)
7.3 Trigonometric Substitution
413(7)
7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
420(6)
7.5 The Method of Partial Fractions
426(10)
7.6 Improper Integrals
436(12)
7.7 Probability and Integration
448(6)
7.8 Numerical Integration
454(13)
Preparing for the AP Exam
1(466)
Chapter 8 Further Applications Of The Integral And Taylor Polynomials
467(35)
8.1 Arc Length and Surface Area
467(7)
8.2 Fluid Pressure and Force
474(6)
8.3 Center of Mass
480(8)
8.4 Taylor Polynomials
488(14)
Preparing for the AP Exam
1(501)
Chapter 9 Introduction To Differential Equations
502(35)
9.1 Solving Differential Equations
502(9)
9.2 Models Involving y' = k(y-b)
511(5)
9.3 Graphical and Numerical Methods
516(8)
9.4 The Logistic Equation
524(4)
9.5 First-Order Linear Equations
528(9)
Preparing for the AP Exam
1(536)
Chapter 10 Infinite Series
537(70)
10.1 Sequences
537(11)
10.2 Summing an Infinite Series
548(11)
10.3 Convergence of Series with Positive Terms
559(10)
10.4 Absolute and Conditional Convergence
569(6)
10.5 The Ratio and Root Tests
575(4)
10.6 Power Series
579(12)
10.7 Taylor Series
591(16)
Preparing for the AP Exam
1(606)
Chapter 11 Parametric Equations, Polar Coordinates, And Vector Functions
607(65)
11.1 Parametric Equations
607(13)
11.2 Arc Length and Speed
620(6)
11.3 Polar Coordinates
626(8)
11.4 Area, Arc Length, and Slope in Polar Coordinates
634(7)
11.5 Vectors in the Plane
641(12)
11.6 Dot Product and the Angle between Two Vectors
653(7)
11.7 Calculus of Vector-Valued Functions
660(12)
Preparing for the AP Exam
1(671)
Chapter 12 Differentiation In Several Variables
672(1)
12.1 Functions of Two or More Variables
672(12)
12.2 Limits and Continuity in Several Variables
684(8)
12.3 Partial Derivatives
692(11)
12.4 Differentiability and Tangent Planes
703(8)
12.5 The Gradient and Directional Derivatives
711(12)
12.6 The Chain Rule
723(8)
12.7 Optimization in Several Variables
731(14)
12.8 Lagrange Multipliers: Optimizing with a Constraint
745
Appendices 1(26)
A The Language of Mathematics
1(7)
B Properties of Real Numbers
8(5)
C Induction and the Binomial Theorem
13(5)
D Additional Proofs
18(17)
Answers To Odd-Numbered Exercises 27(77)
Answers To The Odd-Numbered Preparing For The Ap Exam Questions 104(5)
References 109(3)
Photo Credits 112
Index 1
Preface vi
Chapter 1 Precalculus Review
1(14)
1.1 Real Numbers, Functions, and Graphs
1(1)
1.2 Linear and Quadratic Functions
2(1)
1.3 The Basic Classes of Functions
3(1)
1.4 Trigonometric Functions
4(2)
1.5 Inverse Functions
6(1)
1.6 Exponential and Logarithmic Functions
6(2)
1.7 Technology: Calculators and Computers
8(7)
Chapter 1 Practice Problems
9(6)
Chapter 2 Limits
15(28)
2.1 Limits, Rates of Change, and Tangent Lines
16(2)
2.2 Limits: A Numerical and Graphical Approach
18(2)
2.3 Basic Limit Laws
20(3)
2.4 Limits and Continuity
23(2)
2.5 Evaluating Limits Algebraically
25(3)
2.6 Trigonometric Limits
28(2)
2.7 Limits at Infinity
30(2)
2.8 Intermediate Value Theorem
32(2)
2.9 The Formal Definition of a Limit
34(9)
Chapter 2 Preparing for the Exam
35(8)
Chapter 3 Differentiation
43(40)
3.1 Definition of the Derivative
44(3)
3.2 The Derivative as a Function
47(3)
3.3 Product and Quotient Rules
50(2)
3.4 Rates of Change
52(2)
3.5 Higher Derivatives
54(3)
3.6 Trigonometric Functions
57(2)
3.7 The Chain Rule
59(2)
3.8 Derivatives of Inverse Functions
61(3)
3.9 Derivatives of General Exponential and Logarithmic Functions
64(3)
3.10 Implicit Differentiation
67(2)
3.11 Related Rates
69(14)
Chapter 3 Preparing for the Exam
74(9)
Chapter 4 Applications of the Derivative
83(32)
4.1 Linear Approximation and Applications
84(2)
4.2 Extreme Values
86(3)
4.3 The Mean Value Theorem and Monotonicity
89(3)
4.4 The Shape of a Graph
92(3)
4.5 L'Hopital's Rule
95(3)
4.6 Graph Sketching and Asymptotes
98(3)
4.7 Applied Optimization
101(3)
4.8 Newton's Method
104(1)
4.9 Antiderivatives
104(11)
Chapter 4 Preparing for the Exam
108(7)
Chapter 5 The Integral
115(32)
5.1 Approximating and Computing Area
116(2)
5.2 The Definite Integral
118(3)
5.3 The Fundamental Theorem of Calculus, Part I
121(2)
5.4 The Fundamental Theorem of Calculus, Part II
123(3)
5.5 Net Change as the Integral of a Rate
126(2)
5.6 Substitution Method
128(3)
5.7 Further Transcendental Functions
131(3)
5.8 Exponential Growth and Decay
134(13)
Chapter 5 Preparing for the Exam
138(9)
Chapter 6 Applications of the Integral
147(24)
6.1 Area Between Two Curves
148(4)
6.2 Setting Up Integrals: Volume, Density, Average Value
152(5)
6.3 Volumes of Revolution
157(5)
6.4 The Method of Cylindrical Shells
162(1)
6.5 Work and Energy
162(9)
Chapter 6 Preparing for the Exam
163(8)
Chapter 7 Techniques of Integration
171(26)
7.1 Integration by Parts
172(3)
7.2 Trigonometric Integrals
175(2)
7.3 Trigonometric Substitution
177(1)
7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
177(1)
7.5 The Method of Partial Fractions
177(3)
7.6 Improper Integrals
180(5)
7.7 Probability and Integration
185(1)
7.8 Numerical Integration
185(12)
Chapter 7 Preparing for the Exam
189(8)
Chapter 8 Further Applications of the Integral and Taylor Polynomials
197(18)
8.1 Arc Length and Surface Area
198(2)
8.2 Fluid Pressure and Force
200(1)
8.3 Center of Mass
201(1)
8.4 Taylor Polynomials
201(14)
Chapter 8 Preparing for the Exam
205(10)
Chapter 9 Introduction to Differential Equations
215(24)
9.1 Solving Differential Equations
216(2)
9.2 Models Involving y' = k(y - b)
218(3)
9.3 Graphical and Numerical Methods
221(3)
9.4 The Logistic Equation
224(3)
9.5 First-Order Linear Equations
227(12)
Chapter 9 Preparing for the Exam
228(11)
Chapter 10 Infinite Series
239(30)
10.1 Sequences
240(1)
10.2 Summing an Infinite Series
240(3)
10.3 Convergence of Series with Positive Terms
243(3)
10.4 Absolute and Conditional Convergence
246(3)
10.5 The Ratio and Root Tests
249(3)
10.6 Power Series
252(3)
10.7 Taylor Series
255(14)
Chapter 10 Preparing for the Exam
260(9)
Chapter 11 Parametric Equations, Polar Coordinates, and Vector Functions
269
11.1 Parametric Equations
270(2)
11.2 Arc Length and Speed
272(3)
11.3 Polar Coordinates
275(3)
11.4 Area, Arc Length, and Slope in Polar Coordinates
278(4)
11.5 Vectors in the Plane
282(1)
11.6 Dot Product and the Angle Between Two Vectors
282(1)
11.7 Calculus of Vector-Valued Functions
282
Chapter 11 Preparing for the Exam
286