Atjaunināt sīkdatņu piekrišanu

E-grāmata: Role of Advanced Computation, Predictive Technologies, and Big Data Analytics in Food and Nutrition Research: Proceedings of a Workshop

  • Formāts: 128 pages
  • Izdošanas datums: 24-Apr-2024
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309715737
  • Formāts - EPUB+DRM
  • Cena: 23,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 128 pages
  • Izdošanas datums: 24-Apr-2024
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309715737

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are promising tools that can be used to develop algorithms to better understand and predict interactions between food- and nutrition-related data and health outcomes. Understanding that additional research is needed to identify areas where AI/ML is likely to have an impact, the National Academies Food and Nutrition Board hosted a public workshop in October 2023 to explore the future benefits and limitations of integrating big data and AI/ML tools into nutrition research. Participants also discussed issues related to diversity, equity, inclusion, bias, and privacy and the appropriate use of evidence generated from these new methods.

Table of Contents



Front Matter 1 Introduction 2 Setting the Stage 3 Applications and Lessons Learned 4 Capacity Building 5 Potential Applications of AI to Large-Scale Food and Nutrition Initiatives 6 Final Discussion and Synthesis References Appendix A: Workshop Agenda Appendix B: Biographical Sketches of the Speakers and Moderators