Atjaunināt sīkdatņu piekrišanu

Rough Collisions [Mīkstie vāki]

  • Formāts: Paperback / softback, 117 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society Vol. 304 No. 1533
  • Izdošanas datums: 31-Mar-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472503
  • ISBN-13: 9781470472504
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 117 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society Vol. 304 No. 1533
  • Izdošanas datums: 31-Mar-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472503
  • ISBN-13: 9781470472504
Citas grāmatas par šo tēmu:
"A rough collision law describes the limiting contact dynamics of a pair of rough rigid bodies, as the scale of the rough features (asperities) on the surface of each body goes to zero. The class of rough collision laws is quite large and includes randomelements. Our main results characterize the rough collision laws for a freely moving rough disk and a fixed rough wall in dimension 2. Any collision law which (i) is symmetric with respect to a certain well-known invariant measure from billiards theory, and (ii) conserves the projection of the phase space velocity onto the "rolling velocity" is a rough collision law. We also provide a method for explicitly constructing rough collision laws for a broad range of choices of microstructure on the disk and wall. In our introduction, we review past work in billiards, including characterizations of other rough billiard systems, which our results build upon"-- Provided by publisher.
Chapters
1. Introduction
2. Examples
3. Specular Reflection Law
4. Elementary Properties of the Billiard System
5. Proofs of Main Results
6. Rough Reflections in General Billiard Domains
Index of Notation
Peter Rudzis, University of Washington, Seattle, Washington.