Atjaunināt sīkdatņu piekrišanu

Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems Softcover reprint of the original 1st ed. 2000 [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 683 pages, height x width: 235x155 mm, weight: 1050 g, X, 683 p., 1 Paperback / softback
  • Sērija : Studies in Fuzziness and Soft Computing 56
  • Izdošanas datums: 08-Oct-2012
  • Izdevniecība: Physica Verlag,Wien
  • ISBN-10: 3662003767
  • ISBN-13: 9783662003763
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 683 pages, height x width: 235x155 mm, weight: 1050 g, X, 683 p., 1 Paperback / softback
  • Sērija : Studies in Fuzziness and Soft Computing 56
  • Izdošanas datums: 08-Oct-2012
  • Izdevniecība: Physica Verlag,Wien
  • ISBN-10: 3662003767
  • ISBN-13: 9783662003763
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.
Foreword vii
Z. Pawlak
Part 1 Introduction
Introducing the Book 3(6)
L. Polkowski
S. Tsumoto
T.Y. Lin
Chapter 1 A Rough Set Perspective on Knowledge Discovery in Information Systems: An Essay on the Topic of the Book
9(40)
L. Polkowski
S. Tsumoto
T.Y. Lin
Part 2 Methods And Applications: Reducts, Similarity, Mereology
Chapter 2 Rough Set Algorithms in Classification Problem
49(40)
J.G. Bazan
Hung Son Nguyen
Sinh Hoa Nguyen
P. Synak
J. Wroblewski
Chapter 3 Rough Mereology in Information Systems. A Case Study: Qualitative Spatial Reasoning
89(48)
L. Polkowski
A. Skowron
Chapter 4 Knowledge Discovery by Application of Rough Set Models
137(98)
J. Stepaniuk
Chapter 5 Various Approaches to Reasoning with Frequency Based Decision Reducts: A Survey
235(54)
D. Slezak
Part 3 Methods And Applications: Regular Pattern Extraction, Concurrency
Chapter 6 Regularity Analysis and its Applications in Data Mining
289(90)
Sinh Hoa Nguyen
Chapter 7 Rough Set Methods for the Synthesis and Analysis of Concurrent Processes
379(112)
Z. Suraj
Part 4 Methods And Applications: Algebraic And Statistical Aspects, Conflicts, Incompleteness
Chapter 8 Conflict Analysis
491(30)
R. Deja
Chapter 9 Logical and Algebraic Techniques for Rough Set Data Analysis
521(24)
I. Duntsch
G. Gediga
Chapter 10 Statistical Techniques for Rough Set Data Analysis
545(22)
G. Gediga
I. Duntsch
Chapter 11 Data Mining in Incomplete Information Systems from Rough Set Perspective
567(16)
M. Kryszkiewicz
H. Rybinski
Part 5 Afterword
Chapter 12 Rough Sets and Rough Logic: A KDD Perspective
583(66)
Z. Pawlak
L. Polkowski
A. Skowron
Appendix: Selected Bibliofgraphy On Rough Sets
Bibliography 649