Atjaunināt sīkdatņu piekrišanu

E-grāmata: Roundtable on Data Science Postsecondary Education: A Compilation of Meeting Highlights

  • Formāts: 223 pages
  • Izdošanas datums: 02-Sep-2020
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309677738
  • Formāts - EPUB+DRM
  • Cena: 61,35 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 223 pages
  • Izdošanas datums: 02-Sep-2020
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309677738

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.

Table of Contents



Front Matter 1 Introduction 2 Meeting #1: The Foundations of Data Science from Statistics, Computer Science, Mathematics, and Engineering 3 Meeting #2: Examining the Intersection of Domain Expertise and Data Science 4 Meeting #3: Data Science Education in the Workplace 5 Meeting #4: Alternative Mechanisms for Data Science Education 6 Meeting #5: Integrating Ethical and Privacy Concerns into Data Science Education 7 Meeting #6: Improving Reproducibility by Teaching Data Science as a Scientific Process 8 Meeting #7: Programs and Approaches for Data Science Education at the Ph.D. Level 9 Meeting #8: Challenges and Opportunities to Better Engage Women and Minorities in Data Science Education 10 Meeting #9: Motivating Data Science Education Through Social Good 11 Meeting #10: Improving Coordination Between Academia and Industry 12 Meeting #11: Data Science Education at Two-Year Colleges References Appendixes Appendix A: Biographical Sketches of Roundtable Members Appendix B: Meeting Participants
1 Introduction
1(7)
2 Meeting #1: The Foundations of Data Science from Statistics, Computer Science, Mathematics, and Engineering
8(9)
3 Meeting #2: Examining the Intersection of Domain Expertise and Data Science
17(14)
4 Meeting #3: Data Science Education in the Workplace
31(15)
5 Meeting #4: Alternative Mechanisms for Data Science Education
46(16)
6 Meeting #5: Integrating Ethical and Privacy Concerns Into Data Science Education
62(16)
7 Meeting #6: Improving Reproducibility By Teaching Data Science as a Scientific Process
78(16)
8 Meeting #7: Programs and Approaches for Data Science Education at the Ph.D. Level
94(13)
9 Meeting #8: challenges and Opportunities to Better Engage Women and Minorities in Data Science Education
107(15)
10 Meeting #9: Motivating Data Science Education Through Social Good
122(16)
11 Meeting #10: Improving Coordination Between Academia and Industry
138(19)
12 Meeting #11: Data Science Education at Two-Year Colleges
157(26)
References
179(4)
APPENDIXES
A Biographical Sketches of Roundtable Members
183(18)
B Meeting Participants
201