Atjaunināt sīkdatņu piekrišanu

Russia's Regions and Comparative Subnational Politics [Hardback]

Edited by (Ubniversity of Iowa, USA)
  • Formāts: Hardback, 240 pages, height x width: 234x156 mm, weight: 600 g, 19 Tables, black and white; 18 Line drawings, black and white; 18 Illustrations, black and white
  • Sērija : Routledge Research in Comparative Politics
  • Izdošanas datums: 16-Nov-2012
  • Izdevniecība: Routledge
  • ISBN-10: 0415629969
  • ISBN-13: 9780415629966
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 197,77 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 240 pages, height x width: 234x156 mm, weight: 600 g, 19 Tables, black and white; 18 Line drawings, black and white; 18 Illustrations, black and white
  • Sērija : Routledge Research in Comparative Politics
  • Izdošanas datums: 16-Nov-2012
  • Izdevniecība: Routledge
  • ISBN-10: 0415629969
  • ISBN-13: 9780415629966
Citas grāmatas par šo tēmu:
"Subnational political units are growing in influence in national and international affairs, drawing increasing scholarly attention to politics beyond national capitals. In this book, leading Russian and Western political scientists contribute to debatesin comparative politics by examining Russia's subnational politics"--

"Subnational political units are growing in influence in national and international affairs, drawing increasing scholarly attention to politics beyond national capitals. In this book, leading Russian and Western political scientists contribute to debatesin comparative politics by examining Russia's subnational politics. Beginnings with a chapter that reviews major debates in theory and method, this book continues to examine Russia's 83 regions, exploring a wide range of topics including the nature and stability of authoritarian regimes, federal politics, political parties, ethnic conflict, governance and inequality in a comparative perspective. Providing both qualitative and quantitative data from 20 years of original research, the book draws on elite interaction, public opinion and the role of institutions regionally in the post-Soviet years. The regions vary on a number of theoretically interesting dimensions while their federal membership provides control for other dimensions that are challenging forglobally comparative studies. The authors demonstrate the utility of subnational analyses and show how regional questions can help answer a variety of political questions, providing evidence from Russia that can be used by specialists on other large countries or world regions in cross-national scholarship.Situated within broader theoretical and methodological political science debates, this book will be of interest to students and scholars of Russian politics, comparative politics, regionalism and subnational politics"--

List of figures
xiii
List of tables
xiv
Notes on contributors xvi
Preface xix
Basic information on Russia's regions and regional terminology xxi
1 Studying Russia's regions to advance comparative political science
1(24)
William M. Reisinger
2 Politics, governance, and the zigzags of the power vertical: toward a framework for analyzing Russia's local regimes
25(15)
Vladimir Gel'man
3 Deference or governance? A survival analysis of Russia's governors under presidential control
40(23)
William M. Reisinger
Bryon J. Moraski
4 Why do political systems become party systems? Addressing a cross-national puzzle through subnational survey data
63(19)
Henry E. Hale
Timothy J. Colton
5 Opposition parties in dominant-party regimes: inclusion and exclusion in Russia's regions
82(20)
Rostislav Turovsky
6 National identity and xenophobia in Russia: opportunities for regional analysis
102(18)
Yoshiko M. Herrera
Nicole M. Butkovich Kraus
7 Good governance: efficiency and effectiveness in Russian regional healthcare
120(20)
Andrei Akhremenko
8 Inequality and authoritarian rule in Russia and China
140(22)
Thomas F. Remington
9 Making autocracy work? Russian regional politics under Putin
162
Donna Bahry
Bibliography 173(33)
Index 206(307)
Preface xiii
1 Iron-Based Superconductors: Discovery and Progress in Materials
1(52)
Hideo Hosono
1.1 Introduction
1(2)
1.2 Small History on Discovery and Progress in Parent Materials
3(3)
1.3 Crystal Structure of Parent Materials
6(5)
1.3.1 1111-Type Materials (LnFePnO, Ln: Lanthanide)
6(3)
1.3.2 122-Type Materials (AeFe2Pn2, Ae: Alkaline Earth or Eu)
9(1)
1.3.3 111-Type Materials (AFePn, A: Alkali Metal)
10(1)
1.3.4 11-Type Materials (Fe1+xSe)
10(1)
1.3.5 Homologous-Type Materials: (Fe2As2)(Aen+1MmOy)
10(1)
1.4 Parent Material and Superconductivity
11(12)
1.4.1 Doping Effect
11(1)
1.4.1.1 The 1111-type
12(3)
1.4.1.2 The 122-type
15(5)
1.4.2 Local Structure and Tc
20(3)
1.5 Unique Characteristics of FeSCs
23(4)
1.5.1 Multi-Band Nature of Fe3d
23(1)
1.5.2 Parent Material: Antiferromagnetic Metal
24(1)
1.5.3 Impurity Robust Tc
25(1)
1.5.4 Large Critical Field and Small Anisotropy
25(1)
1.5.5 Advantageous Grain Boundary Nature
26(1)
1.6 Single Crystal
27(5)
1.6.1 Growth of 1111-Type Crystals
27(2)
1.6.2 Growth of the 122-Type Crystals
29(1)
1.6.3 Characteristics of a Single Crystal
30(2)
1.7 Thin Film
32(8)
1.7.1 1111-Type Compounds
32(3)
1.7.2 122-Type Compounds
35(3)
1.7.3 11-Type Compounds
38(2)
1.8 Summary and Relevant New Superconductors
40(13)
2 Synthesis and Physical Properties of the New Potassium Iron Selenide Superconductor K0.80Fe1.76Se2
53(36)
R. Hu
E. D. Mun
D. H. Ryan
K. Cho
H. Kim
H. Hodovanets
W. E. Straszheim
M. A. Tanatar
R. Prozorov
W. N. Rowan-Weetaluktuk
J. M. Cadogan
M. M. Altarawneh
C. H. Mielke
V.S. Zapf
S. L. Bud'ko
P. C. Canfield
2.1 Introduction
54(1)
2.2 Experimental Methods
55(2)
2.3 Crystal Growth and Stoichiometry
57(2)
2.4 Physical Properties of Single Crystals of K0.80Fe1.76Se2
59(21)
2.4.1 Transport and Thermodynamic Properties
59(5)
2.4.2 London Penetration Depth and Magneto-Optical Imaging
64(2)
2.4.3 Anisotropic Hc2(T)
66(5)
2.4.4 57Fe Mossbauer Spectroscopy
71(8)
2.4.5 Phase Separation and Possible Superconducting Aerogel
79(1)
2.5 Summary
80(9)
3 Angle-Resolved Photoemission Spectroscopy of Iron Pnictides
89(36)
Takafumi Sato
Pierre Richard
Kosuke Nakayama
Takashi Takahashi
Hong Ding
3.1 Introduction
90(3)
3.1.1 Principle of ARPES
91(2)
3.2 Experimental Results
93(22)
3.2.1 Fermi Surface and Pairing Symmetry
93(1)
3.2.1.1 Hole-doped system
93(11)
3.2.1.2 Electron-doped system
104(4)
3.2.2 Many-Body Interactions
108(4)
3.2.3 Parent Compound
112(3)
3.3 Concluding Remarks and Summary
115(10)
4 Quantum Oscillations in Iron Pnictide Superconductors
125(36)
Suchitra E. Sebastian
4.1 Quantum Oscillations
126(3)
4.1.1 Angular Dependence
128(1)
4.1.1.1 Fermi surface geometry
128(1)
4.1.1.2 Spin splitting
128(1)
4.2 Magnetic Field Dependence
129(1)
4.3 Temperature Dependence
130(1)
4.4 Iron Pnictide Superconductors
131(1)
4.5 Quantum Oscillations in Antiferromagnetic Parent Iron Pnictides
131(11)
4.5.1 Fermi Surface Geometry: Nonmagnetic and Antiferromagnetic Band Structure Calculations
134(3)
4.5.2 Experimental Comparison with Band Structure
137(4)
4.5.3 Dirac Nodes
141(1)
4.6 Quantum Oscillations in Overdoped Paramagnetic Iron Pnictides
142(4)
4.6.1 Quasi-Nesting of Hole and Electron Cylinders
144(2)
4.7 Cuprates and Iron Pnictides: Electronic Structure Comparison
146(6)
4.7.1 Enhancement in Lindhard Function in Pnictides and Cuprates
147(2)
4.7.2 Quantum Critical Point under Superconducting Dome
149(3)
4.8 Conclusion
152(9)
5 Optical Investigation on Iron-Based Superconductors
161(82)
Nan-Lin Wang
Zhi-Guo Chen
5.1 Introduction
161(3)
5.2 Introduction About Optical Properties of Solids
164(12)
5.2.1 Optical Constants
164(2)
5.2.2 Interband and Intraband Excitations
166(2)
5.2.3 Drude Model and Drude-Lorentz Model
168(2)
5.2.4 Extended Drude Model
170(2)
5.2.5 Sum Rules
172(2)
5.2.6 Optical Response of Broken Symmetry States of Metals
174(2)
5.3 Optical Studies on the Parent Compounds
176(10)
5.3.1 Spin Density Wave Gap in FeAs-Based Compounds
177(5)
5.3.2 Absence of SDW Gap in FeTe1+x
182(2)
5.3.3 Fully Localized Fe 3d Electrons in K0.8Fe1.6Se2
184(2)
5.4 Multi-Components vs. Extended Drude Model Analysis of Optical Conductivity
186(6)
5.5 Electron Correlations in the Fe-Pnictides/Chalcogenides
192(9)
5.5.1 Kinetic Energy Reduction by Electron Correlations
192(4)
5.5.2 Effect of Hund's Coupling
196(5)
5.6 Anisotropic Charge Dynamics
201(13)
5.6.1 c-Axis Optical Properties in Parent Compounds
201(3)
5.6.2 Anisotropic Optical Properties within ab-Plane
204(5)
5.6.3 c-Axis Optical Properties of Superconducting Compounds
209(5)
5.7 Optical Properties of Iron-Based Superconductors Below Tc
214(29)
5.7.1 Probing the Superconducting Energy Gaps
214(9)
5.7.2 Josephson Coupling Plasmon in KxFe2-ySe2
223(3)
5.7.3 Superconductivity-Induced Spectral Weight Transfer
226(4)
5.7.4 Coherent Peak Below Tc Probed by THz Spectroscopy
230(13)
6 Antiferromagnetic Spin Fluctuations in the Fe-Based Superconductors
243(32)
Shiliang Li
Pengcheng Dai
6.1 Introduction
244(2)
6.2 Antiferromagnetism in Parent Compounds
246(10)
6.2.1 Long-Range Antiferromagnetic Order
246(3)
6.2.2 Spin Waves
249(4)
6.2.3 Destruction of Antiferromagnetic Order
253(3)
6.3 Magnetic Excitations in the Superconducting State
256(8)
6.3.1 Magnetic Resonance
257(4)
6.3.2 Field Effect on Magnetic Resonance
261(3)
6.3.3 Field-Induced Magnetization
264(1)
6.4 Magnetic Excitations in the Normal State
264(4)
6.4.1 In-Plane Anisotropy in the "122" System
264(1)
6.4.2 Incommensurate Magnetic Excitations in the "11" System
265(3)
6.5 Conclusion
268(7)
7 Review of NMR Studies on Iron-Based Superconductors
275(82)
Kenji Ishida
Yusuke Nakai
7.1 Introduction
275(1)
7.2 NMR Basics
276(11)
7.2.1 NMR Hamiltonian
276(2)
7.2.2 Knight Shift and Nuclear Spin-Lattice Relaxation Rate in Metals
278(3)
7.2.3 Knight Shift and Nuclear Spin-Lattice Relaxation Rate in the Superconducting State
281(6)
7.3 NMR Experimental Results on Iron-Based Superconductors
287(59)
7.3.1 LaFeAs(01-xFx) and LaFeAsO1-σ with "1111" Structure
287(1)
7.3.1.1 LaFeAsO: parent compound
288(3)
7.3.1.2 Normal state of LaFeAs(O1-xFx) and LaFeAsO1-σ
291(8)
7.3.1.3 Superconducting state of LaFeAs(O1-xFx) and LaFeAsO1-σ
299(6)
7.3.2 NMR Study in "122" System
305(2)
7.3.2.1 BaFe2As2
307(6)
7.3.2.2 NMR in the normal state of BaFe2(As1-xPx)2
313(6)
7.3.2.3 NMR in the normal state of Ba(Fe1-xCox)2As2
319(4)
7.3.2.4 NMR in the normal state of (Ba1-xKx)Fe2As2
323(2)
7.3.2.5 NMR results on the superconducting state of "122" compounds
325(7)
7.3.3 NMR Study in "111" System, LiFeAs and NaFeAs
332(5)
7.3.4 NMR Study in "11" System, FeSe
337(3)
7.3.5 NMR Study in KxFe2-ySe2
340(6)
7.4 Summary
346(11)
8 Material Specific Model Hamiltonians and Analysis on the Pairing Mechanism
357(74)
Kazuhiko Kuroki
8.1 Introduction
358(1)
8.2 Model Hamiltonian Construction
359(9)
8.2.1 The Band Structure
359(7)
8.2.2 Electron-Electron Interactions
366(2)
8.3 Spin Fluctuations and Antiferromagnetism
368(10)
8.3.1 Random Phase Approximation
368(1)
8.3.2 Electron-Hole Interaction
369(5)
8.3.3 Antiferromagnetism in the Parent Compound
374(4)
8.4 Superconductivity
378(12)
8.4.1 General Theory on Fluctuation Mediated Pairing
378(4)
8.4.2 Spin Fluctuation Mediated Pairing
382(4)
8.4.3 Orbital Fluctuation Mediated Pairing
386(1)
8.4.4 Theoretical Proposals for the Detection of the Pairing State Based on the Effective Multiorbital Hamiltonian
387(3)
8.5 Material Dependence
390(23)
8.5.1 Some Experimental Observations
390(2)
8.5.2 Lattice Structure Dependence of the Band Structure and the Electron-Electron Interactions
392(1)
8.5.2.1 Pnictogen height
392(3)
8.5.2.2 Bond angle
395(2)
8.5.2.3 Three dimensionality
397(3)
8.5.3 Material Dependence of the Spin Fluctuations and Superconductivity
400(1)
8.5.3.1 Lattice structure dependence
400(7)
8.5.3.2 Doping dependence
407(3)
8.5.3.3 Effect of the three dimensionality
410(3)
8.6 Concluding Remarks and Perspectives
413(18)
9 The Antiferromagnetic Phase of Iron-Based Superconductors: An Itinerant Approach
431(42)
Johannes Knolle
Ilya Eremin
9.1 Introduction
431(3)
9.2 A Primer: Single-Band Hubbard Model
434(3)
9.3 Magnetic Order in Ferropnictides
437(11)
9.3.1 Magnetic Frustration
437(4)
9.3.2 Lifting the Magnetic Ground State Degeneracy at TN
441(4)
9.3.3 Ising Nematic Order Above TN
445(3)
9.4 Spin Waves in Itinerant Multiorbital Systems
448(18)
9.4.1 Multiorbital Models - Spin Wave Theory
448(3)
9.4.2 Accidental Collective Modes in Itinerant Frustrated Antiferromagnets
451(7)
9.4.3 Two Orbital Model: Orbital versus Excitonic Scenario
458(6)
9.4.4 Comparison to Experiments
464(2)
9.5 Discussion and Conclusion
466(7)
10 Magnetism in Parent Compounds of Iron-Based Superconductors
473(40)
Jiangping Hu
10.1 Introduction
474(2)
10.2 Experimental Results on the Parent Compounds of Iron-Based Superconductors
476(7)
10.2.1 Results on Iron-Pnictides
476(2)
10.2.2 Results on Iron-Chalcogenides
478(4)
10.2.3 Electronic Structures and Resistivity Anisotropy
482(1)
10.3 Theoretical Models
483(20)
10.3.1 Results of First Principle Electronic Structure Calculation
483(2)
10.3.2 Effective Magnetic Exchange Models for Iron-Pnictides
485(5)
10.3.3 Effective Magnetic Exchange Models for Iron-Chalcogenides
490(1)
10.3.3.1 FeTe
491(4)
10.3.3.2 A0.8Fe1.6Se2
495(3)
10.3.4 A Unified Minimum Magnetic Exchange Model for Iron-Based Superconductors
498(5)
10.4 Electronic Nematism and the Interplay Between Lattice, Spin and Orbital
503(4)
10.5 Discussion
507(6)
Index 513
William M. Reisinger is Professor of Political Science at the University of Iowa, USA.