Atjaunināt sīkdatņu piekrišanu

E-grāmata: Satellite Radar Interferometry: Subsidence Monitoring Techniques

  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book covers a unique combination of scientific research and the practical demand for subsidence monitoring techniques focused on the satellite radar interferometry technique (InSAR). It covers the topic in a generic way: both precision and reliability of InSAR as a measurement technique, and the estimation of earth surface deformation in the presence of multiple deformation causes are addressed.It provides a review of existing subsidence estimation methodologies using geodetic measurements, explains Persistent Scatterer InSAR (PSI), and proposes a new method for reliability assessment: multi-track datum connection. The presented methodologies are demonstrated for the entire northern part of the Netherlands and a part of Germany (covering ~15.000 km2), using multi-track SAR observations from ESA's ERS and Envisat satellites.The capability of PSI for wide-scale monitoring of subsidence rates of several millimeters per year in a rural area (which implies a low PS density) is shown. Additionally, methodologies for a better discrimination of the deformation signal of interest, subsidence due to hydrocarbon production, are assessed.Essential for operational use, the performance of PSI with respect to the leveling technique is quantified. It is shown that the high spatial and temporal observation density of PSI moreover contributes to the understanding of subsurface processes. For example, subsidence due to gas extraction and subsequent uplift due to underground gas storage is clearly detected.

This book investigates the applicability of satellite radar interferometry (InSAR) for deformation monitoring. The presented methodologies are demonstrated in an integrated way for the entire northern part of the Netherlands and a part of Germany.
Summary xiii
Nomenclature xv
1 Introduction
1(6)
1.1 Background
1(1)
1.2 Research Objectives
2(3)
1.3 Outline
5(2)
2 Subsidence Due to Hydrocarbon Production in the Netherlands
7(20)
2.1 Geological Background
7(8)
2.1.1 Hydrocarbon Reservoirs
7(2)
2.1.2 The Groningen Reservoir
9(1)
2.1.3 Reservoir Properties
9(4)
2.1.4 Subsidence Prediction Methodologies
13(2)
2.2 Subsidence Monitoring Using Leveling Measurements
15(3)
2.2.1 Leveling Campaigns
15(2)
2.2.2 Legal Guidelines
17(1)
2.3 Geodetic Deformation Monitoring
18(7)
2.3.1 Adjustment and Testing Procedure
18(2)
2.3.2 Point-wise Multi-epoch Deformation Analysis
20(1)
2.3.3 Continuous Spatio-temporal Deformation Analysis
21(3)
2.3.4 Deformation Analysis of Subsidence Due to Gas Extraction
24(1)
2.4 Conclusions
25(2)
3 Persistent Scatterer InSAR
27(24)
3.1 Interferometric Processing
27(5)
3.1.1 Oversampling
29(1)
3.1.2 Coregistration
30(2)
3.1.3 Interferogram Computation
32(1)
3.2 Persistent Scatterer Selection
32(6)
3.2.1 Identification Methods of PS Candidates
33(2)
3.2.2 Pseudo-calibration
35(3)
3.3 Persistent Scatterer Phase Observations
38(3)
3.3.1 Master Selection
38(2)
3.3.2 Double-difference Observations
40(1)
3.4 PSI Estimation
41(8)
3.4.1 Functional Model
41(2)
3.4.2 Integer Least-Squares Estimation
43(3)
3.4.3 Stochastic Model
46(2)
3.4.4 DePSI Estimation Strategy
48(1)
3.5 Conclusions
49(2)
4 Quality Control
51(44)
4.1 Precision and Reliability in PSI
51(1)
4.2 Influence of Imperfections in the Functional Model
52(7)
4.2.1 Sub-pixel Position
53(1)
4.2.2 Sidelobe Observations
54(2)
4.2.3 Orbital Inaccuracies
56(1)
4.2.4 Phase Unwrapping in the Presence of Atmospheric Disturbances
57(2)
4.3 Imperfections in the Stochastic Model
59(8)
4.3.1 Measurement Precision
60(1)
4.3.2 Separation of Unmodeled Deformation and Atmospheric Signal
60(2)
4.3.3 Possibilities and Limitations of Variance Component Estimation
62(2)
4.3.4 Dilution of Precision
64(3)
4.4 Measurement Precision
67(9)
4.4.1 Leveling Precision
68(1)
4.4.2 InSAR A-priori Measurement Precision
69(2)
4.4.3 InSAR and Leveling Double-Difference Displacements
71(2)
4.4.4 Validation of the Stochastic Model
73(1)
4.4.5 InSAR A-posteriori Precision
74(2)
4.5 Idealization Precision for Deformation Monitoring
76(16)
4.5.1 Deformation Regimes
77(1)
4.5.2 PS Characterization
78(8)
4.5.3 The Use of A-priori Knowledge on the Deformation Signal
86(6)
4.6 Conclusions
92(3)
5 Multi-track PSI
95(18)
5.1 Single-Track Datum Connection
96(2)
5.2 Multi-track Datum Connection
98(12)
5.2.1 Unified Radar Datum
98(6)
5.2.2 Connection of PSI Estimates
104(5)
5.2.3 Spatial Trends
109(1)
5.3 Decomposition of Line of Sight Deformation
110(1)
5.3.1 System of Equations
110(1)
5.3.2 Quadtree Decomposition
111(1)
5.4 Conclusions
111(2)
6 PSI Subsidence Monitoring in Groningen
113(54)
6.1 InSAR Processing Strategy
113(11)
6.1.1 Data Coverage and Master Selection
113(5)
6.1.2 Generation of Interferograms
118(2)
6.1.3 DePSI
120(4)
6.2 ERS and Envisat PSI Results
124(5)
6.2.1 ERS Deformation Estimates
124(4)
6.2.2 Envisat Deformation Estimates
128(1)
6.3 Quality Control
129(12)
6.3.1 Precision of PSI Estimates
130(3)
6.3.2 Unmodeled Residual Components
133(8)
6.4 Multi-track Analysis
141(6)
6.4.1 Datum Connection
141(4)
6.4.2 Displacement Vector Decomposition
145(2)
6.5 Idealization Precision for Deformation Monitoring
147(19)
6.5.1 Identification of Deformation Regimes
148(5)
6.5.2 Shallow and Deep Subsurface Movements in Groningen
153(2)
6.5.3 PS Characterization
155(7)
6.5.4 On the Use of A-priori Knowledge on the Deformation Signal
162(4)
6.6 Conclusions
166(1)
7 Cross-Validation and Operational Implementation
167(32)
7.1 Precision and Spatio-Temporal Observation Frequency
167(12)
7.1.1 PSI and Leveling Deformation Estimates
167(2)
7.1.2 Setup for the Evaluation of Spatio-Temporal Sampling
169(1)
7.1.3 Temporal Sampling
170(3)
7.1.4 Spatial Sampling
173(6)
7.2 Comparison of PSI and Leveling Deformation Estimates
179(14)
7.2.1 Parameterization of the Agreement between PSI and Leveling
181(3)
7.2.2 PSI and Leveling Displacement Rates
184(5)
7.2.3 PSI and Leveling Displacements
189(4)
7.3 The Integration of Geodetic Measurement Techniques
193(4)
7.3.1 Mathematical Model
194(1)
7.3.2 The Integration of Leveling and PSI
195(2)
7.4 Conclusions
197(2)
8 Discussion and Future Subsidence Monitoring
199(12)
8.1 Precision and Reliability
199(2)
8.2 Separation of Deformation Regimes
201(2)
8.3 PSI and Reservoir Behavior
203(4)
8.3.1 Temporal Behavior of Subsidence Due to Gas Extraction
203(4)
8.3.2 Spatial Behavior of Subsidence Due to Gas Extraction
207(1)
8.4 Future Subsidence Monitoring
207(4)
9 Conclusions and Recommendations
211(8)
9.1 Conclusions
211(5)
9.1.1 PS Density
212(1)
9.1.2 Precision
212(1)
9.1.3 Reliability
213(1)
9.1.4 Deformation Regimes
214(1)
9.1.5 Cross-Validation PSI and Leveling
215(1)
9.1.6 Hydrocarbon Reservoir Behavior
215(1)
9.1.7 Outlook
216(1)
9.2 Contributions
216(1)
9.3 Recommendations
217(2)
Appendix 1 Location of Research Areas
219(2)
Appendix 2 PSI and Leveling Displacement Profiles
221(10)
A2.1 PSI (Track 380,487) and Leveling (Free Network Adjustments)
221(2)
A2.2 PSI (Track 380,487) and Leveling (SuMo Analysis)
223(8)
Bibliography 231(8)
About the Author 239(2)
Index 241