Atjaunināt sīkdatņu piekrišanu

E-grāmata: Satellite Sar Detection Of Sub-mesoscale Ocean Dynamic Processes

(University Of Maryland, Usa)
  • Formāts: 348 pages
  • Sērija : Advanced Series On Ocean Engineering 44
  • Izdošanas datums: 17-Mar-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814749022
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 103,69 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 348 pages
  • Sērija : Advanced Series On Ocean Engineering 44
  • Izdošanas datums: 17-Mar-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814749022
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Synthetic-aperture radar (SAR) as a form of radar to create images of objects, uses the motion of the radar antenna over a targeted region to provide finer spatial resolution than is possible with conventional beam-scanning radars by mounting the antenna on a moving platform such as an aircraft or spacecraft. As antenna aperture (the "size" of the antenna) is defined by the distance the SAR device travels over a target in the time taken for the radar pulses to return to the antenna, the larger the aperture is, the higher the image resolution, therefore, this enables SAR to create high resolution images with comparatively small physical antennas.This special book aims to provide the updated theories and methods for the use of synthetic aperture radar (SAR) onboard satellites to detect ocean processes, i.e., SAR ocean remote sensing. It is a hi-tech application field having been developed since late 1970s and become a powerful tool for obtaining dynamic signatures from the remote and broad ocean.
Preface vii
List of Tables xi
List of Figures xiii
Chapter 1 Principles of Radar Imaging of Ocean Processes 1(26)
1.1 Radar Principles
1(6)
1.2 Ground Resolution of Radars
7(11)
1.2.1 Real aperture radar
7(3)
1.2.2 Basic ideas of synthetic aperture
10(3)
1.2.3 Brief development history of space-based SAR
13(5)
1.3 Radar Wave Scattering on the Sea Surface
18(4)
1.3.1 Reflection, refraction and scattering
18(1)
1.3.2 Radar wave reflectors and scatterers on the sea surface
19(1)
1.3.3 Bragg resonance scattering of sea surface waves
20(2)
1.4 Ocean Wave-Radar Modulation Transfer Function
22(5)
1.4.1 Plant's model
22(1)
1.4.2 Derivation of the wavenumber spectral function of the sea surface wave field
23(4)
Chapter 2 Sub-Mesoscale Ocean Vortex Train 27(28)
2.1 Introduction
27(5)
2.1.1 Scales of ocean dynamical processes
27(3)
2.1.2 OVT
30(2)
2.2 OVTs in the Luzon Strait
32(20)
2.2.1 Study area
32(1)
2.2.2 Satellite-tracked drifter trajectory data
32(3)
2.2.3 Estimated parameters of the OVT
35(1)
2.2.4 Satellite observations and air-sea boundary conditions
35(4)
2.2.5 ASAR image interpretation
39(6)
2.2.6 Inferences of theoretical models
45(3)
2.2.7 Dynamical analysis of the OVT
48(2)
2.2.8 Discussion
50(1)
2.2.9 Summary
51(1)
2.3 OVTs along the Kuroshio East of Taiwan
52(3)
Chapter 3 Spirals on the Sea 55(18)
3.1 Introduction
55(1)
3.2 Ocean Spirals on Satellite Images
56(4)
3.2.1 Space Shuttle photographs
56(2)
3.2.2 ERS-1 SAR images
58(2)
3.3 Formation Mechanism: The Stuart Solution
60(3)
3.4 Symmetry Broken in Favor of Cyclonic Rotation
63(1)
3.5 Three-Dimensional Structure Derived from Cruise Observations
64(7)
3.5.1 SAR image of spirals in ECS
64(1)
3.5.2 Study area and cruise observation
65(1)
3.5.3 Water temperature distribution
66(2)
3.5.4 Horizontal current velocity
68(3)
3.6 Summary
71(2)
Chapter 4 Ocean Near-Inertial Oscillations 73(22)
4.1 Introduction
73(2)
4.2 NIO Signals from Mooring Observations
75(7)
4.2.1 Test area and field program
75(1)
4.2.2 Ocean current time series
76(6)
4.3 Determination of NIO Frequencies
82(3)
4.4 Interpretation of SAR Images of NIOs
85(10)
4.4.1 SAR imaging of NIOs
85(1)
4.4.2 Verification of NIOs
86(4)
4.4.3 Dynamic interpretation of SAR images of NIOs
90(5)
Chapter 5 Estuary Outflow Jet 95(26)
5.1 Introduction
95(1)
5.2 Theoretical Model of a Jet SAR Image
96(5)
5.2.1 Two-dimensional jet
96(2)
5.2.2 Jet modulation to wave spectra
98(3)
5.3 Satellite SAR Images and Field Data
101(3)
5.4 Interpretations of SAR Images of Delaware Bay
104(14)
5.4.1 Study area
104(1)
5.4.2 Summer case
105(6)
5.4.3 Winter case
111(4)
5.4.4 Spring case
115(3)
5.5 Conclusions and Discussion
118(3)
Chapter 6 Ocean Internal Waves: I: Dynamics and Parameter Extraction 121(30)
6.1 Introduction
121(2)
6.2 IW Dynamics
123(11)
6.2.1 Linear theories
123(2)
6.2.2 Nonlinear theories
125(9)
6.3 SAR Imaging of IWs and Parameter Extraction
134(4)
6.4 Indirectly Extracted Parameters: Soliton Characteristic Half Width and Amplitude
138(13)
6.4.1 Analytical solution of a single ocean internal soliton SAR Image
138(2)
6.4.2 Determination of the characteristic half width
140(2)
6.4.3 Validation
142(5)
6.4.4 Discussion
147(4)
Chapter 7 Ocean Internal Waves: II: Statistical Analysis 151(28)
7.1 Introduction
151(2)
7.2 Geographic Distribution
153(3)
7.3 Yearly Distribution of SAR-Observed IW Occurrence Frequency
156(2)
7.4 Monthly SAR-Observed IW Occurrence Frequency
158(2)
7.5 Statistics of Boundary Conditions for IW SAR Imaging
160(3)
7.5.1 Wind condition statistics
160(1)
7.5.2 Sea state statistics
161(2)
7.6 Statistics of Structure of IW Field and Packets
163(4)
7.6.1 Two-dimensional structure of the IW field
163(2)
7.6.2 Statistics of number of solitons in a packet
165(1)
7.6.3 Statistics of IW wavelength
165(2)
7.7 Generation Sources of IWs in NSCS
167(10)
7.7.1 Statistics of origination locations
167(2)
7.7.2 Initial disturbance formation: Internal tides
169(3)
7.7.3 Dynamical condition for IW growth: Shoaling thermocline
172(2)
7.7.4 Field-measured shoaling thermocline
174(3)
7.8 Discussion
177(2)
7.8.1 Interannual variability of SAR-observed IW occurrence frequency
177(1)
7.8.2 Eastward propagating initial disturbances
177(2)
Chapter 8 Ocean Bottom Topography: I: Longitudinal Flow Passing Over Parallel Topographic Corrugations 179(22)
8.1 Introduction
179(2)
8.2 Physics Model
181(2)
8.3 Dynamical Analysis
183(6)
8.3.1 Derivation of disturbance governing equations
183(2)
8.3.2 Solutions of disturbance governing equations
185(2)
8.3.3 Analysis of secondary circulation solutions
187(2)
8.4 Application of Theoretical Solutions
189(9)
8.4.1 Hydrodynamic conditions of the Liaodong Shoal
189(2)
8.4.2 Floating sea ice signatures in MODIS image
191(3)
8.4.3 Floating sea ice signatures in RADARSAT-2 SAR image
194(1)
8.4.4 Sea surface roughness signatures in RADARSAT-1 SAR image
195(3)
8.5 Summary
198(3)
Chapter 9 Ocean Bottom Topography: II: Traverse Flow Passing Over Periodical Topography 201(28)
9.1 Introduction
201(1)
9.2 Study Area and Hydrodynamic Conditions
202(8)
9.2.1 Taiwan banks
202(2)
9.2.2 Circulation systems
204(1)
9.2.3 Tides
204(1)
9.2.4 Vertical stratification
205(1)
9.2.5 Sea surface winds
205(4)
9.2.6 ADCP water depth profiles
209(1)
9.3 SAR Images
210(2)
9.3.1 Information of SAR images
210(1)
9.3.2 Tidal phase and velocity at SAR imaging time
211(1)
9.4 Hydrodynamic Analysis
212(11)
9.4.1 Physics model
212(2)
9.4.2 Wave equations and solutions
214(3)
9.4.3 Stationary wave solutions
217(4)
9.4.4 SAR image of topographic lee waves
221(1)
9.4.5 Solutions for two and one layer oceans
222(1)
9.5 Comparison with Observations
223(4)
9.5.1 Stationary waves and wavelength
223(1)
9.5.2 Hydrodynamic conditions for topographic lee waves
224(2)
9.5.3 Space phase of SAR imagery and radar signal enhancement
226(1)
9.6 Summary
227(2)
Chapter 10 Ocean Bottom Topography: III: Stratified Flow Passing Over Isolated Topography 229(12)
10.1 Introduction
229(2)
10.2 SAR Image Interpretation
231(2)
10.3 Dynamic Analysis
233(3)
10.3.1 Generation mechanisms of SOVTs
234(2)
10.3.2 Vertical propagation mechanism
236(1)
10.4 Complementary Observations
236(2)
10.5 Summary
238(3)
Chapter 11 Marine Atmospheric Boundary Layer Processes 241(36)
11.1 Introduction
241(1)
11.2 SAR Imaging Principles of Atmospheric Process
242(1)
11.3 Island-Induced Atmospheric Solitary Wave Packets
243(10)
11.3.1 SeaWiFS observation
243(3)
11.3.2 SAR observation
246(1)
11.3.3 MODIS observation
247(3)
11.3.4 Dynamic analysis
250(3)
11.4 Atmospheric Frontal Waves
253(9)
11.4.1 Coastal lee waves
253(3)
11.4.2 Solitary wave packets in the atmospheric front
256(6)
11.5 Ocean Surface Rainfall
262(15)
11.5.1 Introduction
262(3)
11.5.2 Radar backscattering from ocean surface rainfall
265(4)
11.5.3 Interpretation of SAR images of ocean rainfall
269(8)
Bibliography 277(20)
Index 297