Atjaunināt sīkdatņu piekrišanu

E-grāmata: Schaum's Outline of Calculus, 6th Edition: 1,105 Solved Problems + 30 Videos

4.02/5 (197 ratings by Goodreads)
  • Formāts: 560 pages
  • Izdošanas datums: 16-Nov-2012
  • Izdevniecība: Schaum Outline Series
  • Valoda: eng
  • ISBN-13: 9780071795548
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 19,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 560 pages
  • Izdošanas datums: 16-Nov-2012
  • Izdevniecība: Schaum Outline Series
  • Valoda: eng
  • ISBN-13: 9780071795548
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Tough Test Questions? Missed Lectures? Not Enough Time Fortunately, there's Schaum's. This all-in-one-package includes more than 1,100 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor!  Youll find everything you need to build confidence, skills, and knowledge for the highest score possible.More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,105 fully solved problemsConcise explanations of all calculus conceptsExpert tips on using the graphing calculator



Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!
Chapter 1 Linear Coordinate Systems. Absolute Value. Inequalities
1(8)
Linear Coordinate System
Finite Intervals
Infinite Intervals
Inequalities
Chapter 2 Rectangular Coordinate Systems
9(9)
Coordinate Axes
Coordinates
Quadrants
The Distance Formula
The Midpoint Formulas
Proofs of Geometric Theorems
Chapter 3 Lines
18(11)
The Steepness of a Line
The Sign of the Slope
Slope and Steepness
Equations of Lines
A Point-Slope Equation
Slope-Intercept Equation
Parallel Lines
Perpendicular Lines
Chapter 4 Circles
29(8)
Equations of Circles
The Standard Equation of a Circle
Chapter 5 Equations and Their Graphs
37(12)
The Graph of an Equation
Parabolas
Ellipses
Hyperbolas
Conic Sections
Chapter 6 Functions
49(7)
Chapter 7 Limits
56(10)
Limit of a Function
Right and Left Limits
Theorems on Limits
Infinity
Chapter 8 Continuity
66(7)
Continuous Function
Chapter 9 The Derivative
73(6)
Delta Notation
The Derivative
Notation for Derivatives
Differentiability
Chapter 10 Rules for Differentiating Functions
79(11)
Differentiation
Composite Functions
The Chain Rule
Alternative Formulation of the Chain Rule
Inverse Functions
Higher Derivatives
Chapter 11 Implicit Differentiation
90(3)
Implicit Functions
Derivatives of Higher Order
Chapter 12 Tangent and Normal Lines
93(5)
The Angles of Intersection
Chapter 13 Law of the Mean. Increasing and Decreasing Functions
Relative Maximum and Minimum
Increasing and Decreasing Functions
98(7)
Chapter 14 Maximum and Minimum Values
105(14)
Critical Numbers
Second Derivative Test for Relative Extrema
First Derivative Test
Absolute Maximum and Minimum
Tabular Method for Finding the Absolute Maximum and Minimum
Chapter 15 Curve Sketching. Concavity. Symmetry
119(11)
Concavity
Points of Inflection
Vertical Asymptotes
Horizontal Asymptotes
Symmetry
Inverse Functions and Symmetry
Even and Odd Functions
Hints for Sketching the Graph of y=f(x)
Chapter 16 Review of Trigonometry
130(9)
Angle Measure
Directed Angles
Sine and Cosine Functions
Chapter 17 Differentiation of Trigonometric Functions
139(13)
Continuity of cos x and sin x
Graph of sin x
Graph of cos x
Other Trigonometric Functions
Derivatives
Other Relationships
Graph of y = tan x
Graph of y = sec x
Angles Between Curves
Chapter 18 Inverse Trigonometric Functions
152(9)
The Derivative of sin-1 x
The Inverse Cosine Function
The Inverse Tangent Function
Chapter 19 Rectilinear and Circular Motion
161(6)
Rectilinear
Motion Motion Under the Influence of Gravity
Circular Motion
Chapter 20 Related Rates
167(6)
Chapter 21 Differentials. Newton's Method
173(8)
The Differential
Newton's Method
Chapter 22 Antiderivatives
181(9)
Laws for Antiderivatives
Chapter 23 The Definite Integral. Area Under a Curve
190(8)
Sigma Notation
Area Under a Curve
Properties of the Definite Integral
Chapter 24 The Fundamental Theorem of Calculus
198(8)
Mean-Value Theorem for Integrals
Average Value of a Function on a Closed Interval
Fundamental Theorem of Calculus
Change of Variable in a Definite Integral
Chapter 25 The Natural Logarithm
206(8)
The Natural Logarithm
Properties of the Natural Logarithm
Chapter 26 Exponential and Logarithmic Functions
214(8)
Properties of ex
The General Exponential Function
General Logarithmic Functions
Chapter 27 L'Hopital's Rule
222(8)
L'Hopital's Rule
Indeterminate Type 0-∞
Indeterminate Type ∞- ∞
Indeterminate Types 0°, ∞0, and 1∞
Chapter 28 Exponential Growth and Decay
230(5)
Half-Life
Chapter 29 Applications of Integration I: Area and Arc Length
235(9)
Area Between a Curve and the y Axis
Areas Between Curves
Arc Length
Chapter 30 Applications of Integration II: Volume
244(15)
Disk Formula
Washer Method
Cylindrical Shell Method
Difference of Shells Formula
Cross-Section Formula (Slicing Formula)
Chapter 31 Techniques of Integration I: Integration by Parts
259(7)
Chapter 32 Techniques of Integration II: Trigonometric Integrands and Trigonometric Substitutions
266(13)
Trigonometric Integrands
Trigonometric Substitutions
Chapter 33 Techniques of Integration III: Integration by Partial Fractions
279(9)
Method of Partial Fractions
Chapter 34 Techniques of Integration IV: Miscellaneous Substitutions
288(5)
Chapter 35 Improper Integrals
293(8)
Infinite Limits of Integration
Discontinuities of the Integrand
Chapter 36 Applications of Integration III: Area of a Surface of Revolution
301(6)
Chapter 37 Parametric Representation of Curves
307(5)
Parametric Equations
Arc Length for a Parametric Curve
Chapter 38 Curvature
312(9)
Derivative of Arc Length
Curvature
The Radius of Curvature
The Circle of Curvature
The Center of Curvature
The Evolute
Chapter 39 Plane Vectors
321(11)
Scalars and Vectors
Sum and Difference of Two Vectors
Components of a Vector
Scalar Product (or Dot Product)
Scalar and Vector Projections
Differentiation of Vector Functions
Chapter 40 Curvilinear Motion
332(7)
Velocity in Curvilinear Motion
Acceleration in Curvilinear Motion
Tangential and Normal Components of Acceleration
Chapter 41 Polar Coordinates
339(13)
Polar and Rectangular Coordinates
Some Topical Polar Curves
Angle of Inclination
Points of Intersection
Angle of Intersection
The Derivative of the Arc Length
Curvature
Chapter 42 Infinite Sequences
352(8)
Infinite Sequences
Limit of a Sequence
Monotonic Sequences
Chapter 43 Infinite Series
360(6)
Geometric Series
Chapter 44 Series with Positive Terms. The Integral Test. Comparison Tests
366(9)
Series of Positive Terms
Chapter 45 Alternating Series. Absolute and Conditional Convergence. The Ratio Test
375(8)
Alternating Series
Chapter 46 Power Series
383(13)
Power Series
Uniform Convergence
Chapter 47 Taylor and Maclaurin Series. Taylor's Formula with Remainder
396(9)
Taylor and Maclaurin Series
Applications of Taylor's Formula with Remainder
Chapter 48 Partial Derivatives
405(9)
Functions of Several Variables
Limits
Continuity
Partial Derivatives
Partial Derivatives of Higher Order
Chapter 49 Total Differential.Differentiability.Chain Rules
414(12)
Total Differential
Differentiability
Chain Rules
Implicit Differentiation
Chapter 50 Space Vectors
426(15)
Vectors in Space
Direction Cosines of a Vector
Determinants
Vector
Perpendicular to Two Vectors
Vector Product of Two Vectors
Triple Scalar Product
Triple Vector Product
The Straight Line
The Plane
Chapter 51 Surfaces and Curves in Space
441(11)
Planes
Spheres
Cylindrical Surfaces
Ellipsoid
Elliptic Paraboloid
Elliptic Cone
Hyperbolic Paraboloid
Hyperboloid of One Sheet
Hyperboloid of Two Sheets
Tangent Line and Normal Plane to a Space Curve
Tangent Plane and Normal Line to a Surface
Surface of Revolution
Chapter 52 Directional Derivatives. Maximum and Minimum Values
452(8)
Directional Derivatives
Relative Maximum and Minimum Values
Absolute Maximum and Minimum Values
Chapter 53 Vector Differentiation and Integration
460(14)
Vector Differentiation
Space Curves
Surfaces
The Operation Δ Divergence and Curl
Integration
Line Integrals
Chapter 54 Double and Iterated Integrals
474(7)
The Double Integral
The Iterated Integral
Chapter 55 Centroids and Moments of Inertia of Plane Areas
481(8)
Plane Area by Double Integration
Centroids
Moments of Inertia
Chapter 56 Double Integration Applied to Volume Under a Surface and the Area of a Curved Surface
489(9)
Chapter 57 Triple Integrals
498(12)
Cylindrical and Spherical Coordinates
The Triple Integral
Evaluation of Triple Integrals
Centroids and Moments of Inertia
Chapter 58 Masses of Variable Density
510(6)
Chapter 59 Differential Equations of First and Second Order
516(11)
Separable Differential Equations
Homogeneous Functions
Integrating Factors
Second-Order Equations
Appendix A 527(1)
Appendix B 528(1)
Index 529
McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide





McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide