Preface |
|
xv | |
|
Chapter 1 Linear Coordinate Systems. Absolute Value. Inequalities |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (3) |
|
|
6 | (3) |
|
Chapter 2 Rectangular Coordinate Systems |
|
|
9 | (10) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
Proofs of Geometric Theorems |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (4) |
|
|
19 | (12) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (4) |
|
|
27 | (4) |
|
|
31 | (8) |
|
|
31 | (1) |
|
The Standard Equation of a Circle |
|
|
31 | (2) |
|
|
33 | (3) |
|
|
36 | (3) |
|
Chapter 5 Equations and Their Graphs |
|
|
39 | (12) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (8) |
|
|
49 | (2) |
|
|
51 | (8) |
|
|
53 | (2) |
|
|
55 | (4) |
|
|
59 | (10) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (4) |
|
|
65 | (4) |
|
|
69 | (8) |
|
|
69 | (4) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
77 | (6) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (3) |
|
|
81 | (2) |
|
Chapter 10 Rules for Differentiating Functions |
|
|
83 | (12) |
|
|
83 | (1) |
|
Composite Functions. The Chain Rule |
|
|
84 | (1) |
|
|
84 | (1) |
|
Alternative Formulation of the Chain Rule |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
86 | (5) |
|
|
91 | (4) |
|
Chapter 11 Implicit Differentiation |
|
|
95 | (4) |
|
|
95 | (1) |
|
Derivatives of Higher Order |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
Chapter 12 Tangent and Normal Lines |
|
|
99 | (6) |
|
The Angles of Intersection |
|
|
100 | (1) |
|
|
100 | (2) |
|
|
102 | (3) |
|
Chapter 13 Law of the Mean. Increasing and Decreasing Functions |
|
|
105 | (8) |
|
Relative Maximum and Minimum |
|
|
105 | (2) |
|
Increasing and Decreasing Functions |
|
|
107 | (1) |
|
|
107 | (3) |
|
|
110 | (3) |
|
Chapter 14 Maximum and Minimum Values |
|
|
113 | (14) |
|
|
113 | (1) |
|
Second Derivative Test for Relative Extrema |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
Absolute Maximum and Minimum |
|
|
115 | (1) |
|
Tabular Method for Finding the Absolute Maximum and Minimum |
|
|
115 | (1) |
|
|
116 | (7) |
|
|
123 | (4) |
|
Chapter 15 Curve Sketching. Concavity. Symmetry |
|
|
127 | (12) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (2) |
|
Inverse Functions and Symmetry |
|
|
130 | (1) |
|
|
130 | (1) |
|
Hints for Sketching the Graph G of y =f{x) |
|
|
130 | (1) |
|
|
131 | (4) |
|
|
135 | (4) |
|
Chapter 16 Review of Trigonometry |
|
|
139 | (10) |
|
|
139 | (1) |
|
|
140 | (1) |
|
Sine and Cosine Functions |
|
|
140 | (4) |
|
|
144 | (3) |
|
|
147 | (2) |
|
Chapter 17 Differentiation of Trigonometric Functions |
|
|
149 | (14) |
|
Continuity of cosx and sinjc |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (2) |
|
Other Trigonometric Functions |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (4) |
|
|
159 | (4) |
|
Chapter 18 Inverse Trigonometric Functions |
|
|
163 | (10) |
|
The Derivative of sin-1 x |
|
|
163 | (1) |
|
The Inverse Cosine Function |
|
|
164 | (1) |
|
The Inverse Tangent Function |
|
|
164 | (3) |
|
|
167 | (2) |
|
|
169 | (4) |
|
Chapter 19 Rectilinear and Circular Motion |
|
|
173 | (6) |
|
|
173 | (1) |
|
Motion Under the Influence of Gravity |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (2) |
|
|
177 | (2) |
|
|
179 | (6) |
|
|
180 | (2) |
|
|
182 | (3) |
|
Chapter 21 Differentials. Newton's Method |
|
|
185 | (8) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
188 | (2) |
|
|
190 | (3) |
|
Chapter 22 Antiderivatives |
|
|
193 | (10) |
|
|
193 | (2) |
|
|
195 | (3) |
|
|
198 | (5) |
|
Chapter 23 The Definite Integral. Area Under a Curve |
|
|
203 | (8) |
|
|
203 | (1) |
|
|
203 | (3) |
|
Properties of the Definite Integral |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (2) |
|
Chapter 24 The Fundamental Theorem of Calculus |
|
|
211 | (8) |
|
Mean Value Theorem for Integrals |
|
|
211 | (1) |
|
Average Value of a Function on a Closed Interval |
|
|
211 | (1) |
|
Fundamental Theorem of Calculus |
|
|
212 | (1) |
|
Change of Variable in a Definite Integral |
|
|
212 | (1) |
|
|
213 | (2) |
|
|
215 | (4) |
|
Chapter 25 The Natural Logarithm |
|
|
219 | (8) |
|
|
219 | (1) |
|
|
219 | (1) |
|
Properties of the Natural Logarithm |
|
|
220 | (2) |
|
|
222 | (2) |
|
|
224 | (3) |
|
Chapter 26 Exponential and Logarithmic Functions |
|
|
227 | (8) |
|
|
227 | (1) |
|
|
227 | (2) |
|
|
228 | (1) |
|
The General Exponential Function |
|
|
229 | (1) |
|
|
229 | (1) |
|
General Logarithmic Functions |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (3) |
|
Chapter 27 L'Hopital's Rule |
|
|
235 | (8) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (1) |
|
Indeterminate Types 0°, ∞° and 1∞ |
|
|
236 | (1) |
|
|
237 | (3) |
|
|
240 | (3) |
|
Chapter 28 Exponential Growth and Decay |
|
|
243 | (6) |
|
|
243 | (1) |
|
|
244 | (2) |
|
|
246 | (3) |
|
Chapter 29 Applications of Integration I: Area and Arc Length |
|
|
249 | (10) |
|
Area Between a Curve and the Y-Axis |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (2) |
|
|
253 | (3) |
|
|
256 | (3) |
|
Chapter 30 Applications of Integration II: Volume |
|
|
259 | (16) |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
262 | (1) |
|
Difference of Shells Formula |
|
|
262 | (1) |
|
Cross-Section Formula (Slicing Formula) |
|
|
263 | (1) |
|
|
264 | (5) |
|
|
269 | (6) |
|
Chapter 31 Techniques of Integration I: Integration by Parts |
|
|
275 | (8) |
|
|
277 | (3) |
|
|
280 | (3) |
|
Chapter 32 Techniques of Integration II: Trigonometric Integrands and Trigonometric Substitutions |
|
|
283 | (14) |
|
|
283 | (2) |
|
Trigonometric Substitutions |
|
|
285 | (2) |
|
|
287 | (5) |
|
|
292 | (5) |
|
Chapter 33 Techniques of Integration III: Integration by Partial Fractions |
|
|
297 | (10) |
|
Method of Partial Fractions |
|
|
298 | (4) |
|
|
298 | (1) |
|
|
299 | (2) |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
302 | (2) |
|
|
304 | (3) |
|
Chapter 34 Techniques of Integration IV: Miscellaneous Substitutions |
|
|
307 | (6) |
|
|
307 | (3) |
|
|
310 | (3) |
|
Chapter 35 Improper Integrals |
|
|
313 | (8) |
|
Infinite Limits of Integration |
|
|
313 | (1) |
|
Discontinuities of the Integrand |
|
|
313 | (1) |
|
|
314 | (4) |
|
|
318 | (3) |
|
Chapter 36 Applications of Integration III: Area of a Surface of Revolution |
|
|
321 | (6) |
|
|
321 | (4) |
|
|
325 | (2) |
|
Chapter 37 Parametric Representation of Curves |
|
|
327 | (6) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
328 | (1) |
|
Arc Length for a Parametric Curve |
|
|
328 | (1) |
|
|
328 | (2) |
|
|
330 | (3) |
|
|
333 | (10) |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
335 | (5) |
|
|
340 | (3) |
|
|
343 | (12) |
|
|
343 | (1) |
|
Sum and Difference of Two Vectors |
|
|
343 | (1) |
|
|
344 | (1) |
|
Scalar Product (or Dot Product) |
|
|
345 | (1) |
|
Scalar and Vector Projections |
|
|
346 | (1) |
|
Differentiation of Vector Functions |
|
|
346 | (1) |
|
|
347 | (5) |
|
|
352 | (3) |
|
Chapter 40 Curvilinear Motion |
|
|
355 | (8) |
|
Velocity in Curvilinear Motion |
|
|
355 | (1) |
|
Acceleration in Curvilinear Motion |
|
|
355 | (1) |
|
Tangential and Normal Components of Acceleration |
|
|
356 | (1) |
|
|
357 | (4) |
|
|
361 | (2) |
|
Chapter 41 Polar Coordinates |
|
|
363 | (14) |
|
Polar and Rectangular Coordinates |
|
|
364 | (1) |
|
Some Typical Polar Curves |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
The Derivative of the Arc Length |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
367 | (6) |
|
|
373 | (4) |
|
Chapter 42 Infinite Sequences |
|
|
377 | (8) |
|
|
377 | (1) |
|
|
377 | (2) |
|
|
379 | (1) |
|
|
380 | (2) |
|
|
382 | (3) |
|
Chapter 43 Infinite Series |
|
|
385 | (6) |
|
|
385 | (2) |
|
|
387 | (2) |
|
|
389 | (2) |
|
Chapter 44 Series with Positive Terms. The Integral Test. Comparison Tests |
|
|
391 | (10) |
|
|
391 | (2) |
|
|
393 | (3) |
|
|
396 | (5) |
|
Chapter 45 Alternating Series. Absolute and Conditional Convergence. The Ratio Test |
|
|
401 | (8) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
403 | (3) |
|
|
406 | (3) |
|
|
409 | (14) |
|
|
409 | (2) |
|
|
411 | (3) |
|
|
414 | (5) |
|
|
419 | (4) |
|
Chapter 47 Taylor and Maclaurin Series. Taylor's Formula with Remainder |
|
|
423 | (10) |
|
Taylor and Maclaurin Series |
|
|
423 | (2) |
|
Applications of Taylor's Formula with Remainder |
|
|
425 | (2) |
|
|
427 | (2) |
|
|
429 | (4) |
|
Chapter 48 Partial Derivatives |
|
|
433 | (10) |
|
Functions of Several Variables |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
Partial Derivatives of Higher Order |
|
|
435 | (1) |
|
|
435 | (4) |
|
|
439 | (4) |
|
Chapter 49 Total Differential. Differentiability. Chain Rules |
|
|
443 | (12) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
446 | (5) |
|
|
451 | (4) |
|
|
455 | (16) |
|
|
455 | (1) |
|
Direction Cosines of a Vector |
|
|
456 | (1) |
|
|
457 | (1) |
|
Vector Perpendicular to Two Vectors |
|
|
457 | (1) |
|
Vector Product of Two Vectors |
|
|
457 | (2) |
|
|
459 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
|
461 | (1) |
|
|
461 | (6) |
|
|
467 | (4) |
|
Chapter 51 Surfaces and Curves in Space |
|
|
471 | (12) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
Hyperboloid of Two Sheets |
|
|
474 | (1) |
|
Tangent Line and Normal Plane to a Space Curve |
|
|
475 | (1) |
|
Tangent Plane and Normal Line to a Surface |
|
|
475 | (1) |
|
|
476 | (1) |
|
|
477 | (3) |
|
|
480 | (3) |
|
Chapter 52 Directional Derivatives. Maximum and Minimum Values |
|
|
483 | (8) |
|
|
483 | (1) |
|
Relative Maximum and Minimum Values |
|
|
484 | (1) |
|
Absolute Maximum and Minimum Values |
|
|
484 | (1) |
|
|
485 | (4) |
|
|
489 | (2) |
|
Chapter 53 Vector Differentiation and Integration |
|
|
491 | (14) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
494 | (1) |
|
|
495 | (1) |
|
|
496 | (1) |
|
|
496 | (1) |
|
|
497 | (5) |
|
|
502 | (3) |
|
Chapter 54 Double and Iterated Integrals |
|
|
505 | (8) |
|
|
505 | (1) |
|
|
506 | (1) |
|
|
507 | (4) |
|
|
511 | (2) |
|
Chapter 55 Centroids and Moments of Inertia of Plane Areas |
|
|
513 | (8) |
|
Plane Area by Double Integration |
|
|
513 | (1) |
|
|
513 | (1) |
|
|
514 | (1) |
|
|
514 | (5) |
|
|
519 | (2) |
|
Chapter 56 Double Integration Applied to Volume Under a Surface and the Area of a Curved Surface |
|
|
521 | (10) |
|
|
521 | (6) |
|
|
527 | (4) |
|
Chapter 57 Triple Integrals |
|
|
531 | (12) |
|
Cylindrical and Spherical Coordinates |
|
|
531 | (1) |
|
|
532 | (1) |
|
Evaluation of Triple Integrals |
|
|
532 | (1) |
|
Centroids and Moments of Inertia |
|
|
533 | (1) |
|
|
533 | (6) |
|
|
539 | (4) |
|
Chapter 58 Masses of Variable Density |
|
|
543 | (6) |
|
|
543 | (4) |
|
|
547 | (2) |
|
Chapter 59 Differential Equations of First and Second Order |
|
|
549 | (12) |
|
Separable Differential Equations |
|
|
549 | (1) |
|
|
549 | (1) |
|
|
549 | (1) |
|
|
550 | (1) |
|
|
550 | (7) |
|
|
557 | (4) |
Appendix A Trigonometric Formulas |
|
561 | (2) |
Appendix B Geometric Formulas |
|
563 | (2) |
Index |
|
565 | |