Atjaunināt sīkdatņu piekrišanu

E-grāmata: Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets

Edited by (Assistant Professor of Electrical Engineering, Sharif University of Technology, Tehran, Iran), Edited by (Associate Professor of Electrical Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Jan-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323852685
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 151,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Jan-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323852685
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities.

Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids.

  • Explores key enabling technologies and infrastructures for virtual power plants in future smart energy systems
  • Reviews technical challenges and introduces solutions to the operation and control of VPPs, particularly focusing on control and interaction with other power system entities
  • Introduces the key integrating role of VPPs in enabling DER powered participative electricity markets
List of Contributors
xiii
Preface xvii
Abbreviations and acronyms xxi
1 Introduction and history of virtual power plants with experimental examples
1(26)
Altaf Q.H. Badar
Piyush Paid
M.J. Sanjari
1.1 Introduction
1(1)
1.2 Distributed generation
2(3)
1.3 Virtual power plant (VPP)
5(16)
1.4 Research on VPP
21(1)
1.5 Summary
21(6)
References
22(5)
2 VPP and hierarchical control methods
27(10)
Jinho Kim
2.1 Introduction
27(1)
2.2 Hierarchical control methods
27(6)
2.3 Conclusion
33(4)
References
34(3)
3 Bidding strategy in the electricity market
37(22)
Morteza Shafiekhani
Ali Zangeneh
Farshad Khavari
3.1 Introduction
37(1)
3.2 Virtual power plant
37(2)
3.3 Optimal bidding of VPP in electricity market
39(3)
3.4 Hypotheses and problem objectives
42(7)
3.5 Case study
49(4)
3.6 Conclusion
53(6)
Appendix 3.A
53(1)
Nomenclature
54(1)
References
55(4)
4 Optimization model of a VPP to provide energy and reserve
59(52)
Niloofar Pourghaderi
Mahmud Fotuhi Firuzabad
Moein Moeini-Aghtaie
Milad Kabirifar
4.1 Introduction
59(1)
4.2 Optimization model of VPP to provide energy
60(16)
4.3 Optimization model of VPP to provide reserve
76(8)
4.4 Examples for VPP optimization model providing energy and reserve
84(20)
4.5 Conclusion
104(7)
Nomenclature
104(3)
References
107(4)
5 Provision of ancillary services in the electricity markets
111(20)
Mehrdad Setayesh Nazar
Kiumars Rahmani
5.1 Introduction
111(2)
5.2 Problem modelling and formulation
113(3)
5.3 Solution algorithm
116(1)
5.4 Numerical results
116(11)
5.5 Conclusions
127(4)
Nomenclature
128(1)
References
129(2)
6 Frequency control and regulating reserves by VPPs
131(32)
Taulant Kerci
Weilin Zhong
Ali Moghassemi
Federico Milano
Panayiotis Moutis
6.1 Introduction
131(7)
6.2 Taxonomy
138(7)
6.3 Examples
145(12)
6.4 Conclusions
157(6)
References
158(5)
7 VPP's participation in demand response aggregation market
163(16)
Ali Shayegan-Rad
Ali Zangeneh
7.1 Introduction
163(1)
7.2 Single-level model of DSO without DR programs
164(1)
7.3 Single-level scheduling model of DSO with DR programs
165(2)
7.4 Bi-level scheduling model between DSO and VPP-DRA
167(3)
7.5 Numerical studies and discussions
170(6)
7.6 Conclusion
176(3)
Nomenclature
176(1)
References
177(2)
8 VPP's participation in demand response exchange market
179(14)
Ali Shayegan-Rad
Ali Zangeneh
8.1 Introduction
179(1)
8.2 VPP scheduling framework
180(1)
8.3 VPP scheduling model
180(3)
8.4 Uncertainties arising from VPP scheduling
183(1)
8.5 Numerical studies and discussions
184(6)
8.6 Conclusion
190(3)
Nomenclature
190(1)
References
191(2)
9 Uncertainty modeling of renewable energy sources
193(16)
Davood Fateh
Mojtaba Eldoromi
Ali Akbar Mod Birjandi
9.1 Introduction
193(2)
9.2 Modeling of RESs
195(1)
9.3 Modeling of VPP
196(1)
9.4 Classification and description of uncertainties in VPP
196(2)
9.5 Optimization approaches of VPP with uncertainties
198(2)
9.6 Problem formulation
200(2)
9.7 Tools used to solve optimization problems of VPP with uncertainties
202(1)
9.8 Case study
203(3)
9.9 Conclusion
206(3)
References
206(3)
10 Frameworks of considering RESs and loads uncertainties in VPP decision-making
209(18)
Zeal Shah
Ali Moghassemi
Panayiotis Moutis
10.1 Introduction
209(5)
10.2 Proposals for handling uncertainty within a VPP
214(4)
10.3 Taxonomy
218(4)
10.4 Conclusions and path forward
222(5)
References
223(4)
11 Risk-averse scheduling of virtual power plants considering electric vehicles and demand response
227(30)
Omid Sadeghian
Amin Mohammadpour Shotorbani
Behnam Mohammadi-Ivatloo
Nomenclature
227(2)
11.1 Introduction
229(3)
11.2 Problem formulation
232(7)
11.3 Case study
239(11)
11.4 Conclusions
250(7)
References
254(3)
12 Optimal operation strategy of virtual power plant considering EVs and ESSs
257(42)
Milad Kabirifar
Niloofar Pourghaderi
Moein Moeini-Aghtaie
12.1 Introduction
257(2)
12.2 Modeling of EVs
259(8)
12.3 Modeling of ESSs
267(7)
12.4 VPP operation strategy modeling in the presence of EVs and ESSs
274(4)
12.5 Examples for VPP optimal operation strategy considering EVs and ESSs
278(12)
12.6 Conclusion
290(9)
Nomenclature
291(2)
References
293(6)
13 EVs vehicle-to-grid implementation through virtual power plants
299(26)
Moein Aldin Parazdeh
Navid Zare Kashani
Davood Fateh
Mojtaba Eldoromi
Ali Akbar Moti Birjandi
Nomenclature
299(1)
13.1 Introduction
300(1)
13.2 Vehicle-to-grid (V2G)
301(1)
13.3 Bidirectional converters for V2G systems
302(1)
13.4 Bidirectional AC-DC converter (BADC)
302(1)
13.5 Bidirectional DC-DC converter (BDC)
303(5)
13.6 Modeling the problem
308(10)
13.7 Case study
318(3)
13.8 Conclusion
321(4)
References
322(3)
14 Short- and long-term forecasting
325(18)
Huseyin Akgay
Tansu Filik
14.1 Introduction
325(1)
14.2 Wind speed forecasting from long-term observations
326(12)
14.3 Conclusion
338(5)
References
339(4)
15 Forecasting of energy demand in virtual power plants
343(16)
Farshad Khavari
Jamal Esmaily
Morteza Shafiekhani
Introduction
343(1)
Load behavior
344(3)
Different weather parameters
347(1)
Different methods for clustering analysis
348(2)
Different methods for STLF
350(1)
Fitness criteria
351(2)
Case study
353(3)
Conclusion
356(3)
References
357(2)
16 Emission impacts on virtual power plant scheduling programs
359(18)
Nazgol Khodadadi
Amin Mansour-Saatloo
Mohammad Amin Mirzaei
Behnam Mohammadi-Ivatloo
Kazem Zare
Mousa Marzband
Nomenclature
359(1)
16.1 Introduction
360(4)
16.2 Problem formulation
364(3)
16.3 Simulation and numerical results
367(6)
16.4 Conclusions
373(4)
References
374(3)
17 Multi-objective scheduling of a virtual power plant considering emissions
377(22)
Morteza Shafiekhani
Ali Hashemizadeh
17.1 Introduction
377(2)
17.2 Problem formulation
379(6)
17.3 Case studies
385(9)
17.4 Conclusion
394(5)
Nomenclature
395(1)
References
396(3)
Author Index 399(16)
Subject Index 415
Ali Zanganeh is Associate Professor of Electrical Engineering at Shahid Rajaee Teacher Training University, Lavizan, Tehran. He received his Ph.D. degree in electrical engineering from Iran University of Science and Technology (IUST) in 2010. His research interests include demand side management, smart grid, resiliency, distributed generation and optimization in power systems. Moein Moeini-Aghtaie is Assistant Professor of Electical Engineering at Sharif University of Technology, Tehran, Iran. He received the M.Sc. and Ph.D. degrees from the Sharif University of Technology, Tehran, Iran, in 2010 and 2014, respectively, both in electrical engineering. His current research interests include reliability and resilience studies of modern distribution systems, especially in the multi-carrier energy environment, and charging management of plug-in hybrid electric vehicles.