Atjaunināt sīkdatņu piekrišanu

E-grāmata: Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars

  • Formāts: PDF+DRM
  • Izdošanas datums: 05-May-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319732206
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-May-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319732206

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook covers handling and performance of both road and race cars. Mathematical models of vehicles are developed always paying attention to state the relevant assumptions and to provide explanations for each step. This innovative approach provides a deep, yet simple, analysis of the dynamics of vehicles The reader will soon achieve a clear understanding of the subject, which will be of great help both in dealing with the challenges of designing and testing new vehicles and in tackling new research topics.

The book deals with several relevant topics in vehicle dynamics that are not discussed elsewhere and this new edition includes thoroughly revised chapters, with new developments, and many worked exercises.


Praise for the previous edition:


Great book! It has changed drastically our approach on many topics. We are now using part of its theory on a daily basis to constantly improve ride and handling performances.

 --- Antonino Pizzuto, Head of Chassis Development Group at Hyundai Motor Europe Technical Center


Astonishingly good! Everything is described in a very compelling and complete way. Some parts use a different approach than other books.

--- Andrea Quintarelli, Core Suspension Engineer at Ford of Europe






This book depicts vehicle handling features, showing that several classic concepts, such as the understeer gradient or the roll axis, are either wrong or inadequate and in need of replacement. Introduces the new concept of Map of Achievable Performance.

1 Introduction 1(6)
1.1 Vehicle Definition
2(1)
1.2 Vehicle Basic Scheme
3(3)
References
6(1)
2 Mechanics of the Wheel with Tire 7(60)
2.1 The Tire as a Vehicle Component
9(1)
2.2 Carcass Features
9(1)
2.3 Contact Patch
10(2)
2.4 Rim Position and Motion
12(4)
2.4.1 Reference System
13(1)
2.4.2 Rim Kinematics
13(3)
2.5 Footprint Force
16(4)
2.5.1 Perfectly Flat Road Surface
18(2)
2.6 Global Mechanical Behavior
20(3)
2.6.1 Tire Transient Behavior
20(1)
2.6.2 Tire Steady-State Behavior
20(1)
2.6.3 Simplifications Based on Tire Tests
21(2)
2.7 Rolling Resistance Moment
23(2)
2.8 Definition of Pure Rolling for Tires
25(8)
2.8.1 Zero Longitudinal Force
26(2)
2.8.2 Zero Lateral Force
28(1)
2.8.3 Zero Vertical Moment
28(1)
2.8.4 Zero Lateral Force and Zero Vertical Moment
28(1)
2.8.5 Pure Rolling Summary
29(2)
2.8.6 Rolling Velocity and Rolling Yaw Rate
31(2)
2.9 Definition of Tire Slips
33(5)
2.9.1 Theoretical Slips
34(1)
2.9.2 The Simple Case (No Camber)
35(1)
2.9.3 From Slips to Velocities
35(1)
2.9.4 (Not So) Practical Slips
36(1)
2.9.5 Tire Slips Are Rim Slips Indeed
36(1)
2.9.6 Slip Angle
37(1)
2.10 Grip Forces and Tire Slips
38(1)
2.11 Tire Tests
39(6)
2.11.1 Tests with Pure Longitudinal Slip
41(1)
2.11.2 Tests with Pure Lateral Slip
42(3)
2.12 Magic Formula
45(5)
2.12.1 Magic Formula Properties
46(1)
2.12.2 Fitting of Experimental Data
47(1)
2.12.3 Vertical Load Dependence
47(3)
2.12.4 Horizontal and Vertical Shifts
50(1)
2.12.5 Camber Dependence
50(1)
2.13 Mechanics of the Wheel with Tire
50(8)
2.13.1 Braking/Driving
51(1)
2.13.2 Cornering
51(2)
2.13.3 Combined
53(2)
2.13.4 Camber
55(1)
2.13.5 Grip
56(1)
2.13.6 Vertical Moment
57(1)
2.14 Exercises
58(9)
2.14.1 Pure Rolling
58(1)
2.14.2 Theoretical and Practical Slips
58(1)
2.14.3 Tire Translational Slips and Slip Angle
58(1)
2.14.4 Tire Spin Slip and Camber Angle
59(1)
2.14.5 Motorcycle Tire
59(1)
2.14.6 Finding the Magic Formula Coefficients
60(7)
3 Vehicle Model for Handling and Performance 67(102)
3.1 Mathematical Framework
68(1)
3.1.1 Vehicle Axis System
68(1)
3.2 Vehicle Congruence (Kinematic) Equations
69(12)
3.2.1 Velocity of G, and Yaw Rate of the Vehicle
69(1)
3.2.2 Yaw Angle of the Vehicle, and Trajectory of G
70(2)
3.2.3 Velocity Center C
72(1)
3.2.4 Fundamental Ratios β and ρ
73(1)
3.2.5 Acceleration of G and Angular Acceleration of the Vehicle
73(3)
3.2.6 Radius of Curvature of the Trajectory of G
76(2)
3.2.7 Radius of Curvature of the Trajectory of a Generic Point
78(1)
3.2.8 Telemetry Data and Mathematical Channels
78(1)
3.2.9 Acceleration Center K
79(1)
3.2.10 Inflection Circle
80(1)
3.3 Tire Kinematics (Tire Slips)
81(4)
3.3.1 Translational Slips
84(1)
3.3.2 Spin Slips
85(1)
3.4 Steering Geometry (Ackermann)
85(5)
3.4.1 Ackermann Steering Kinematics
87(2)
3.4.2 Best Steering Geometry
89(1)
3.4.3 Position of Velocity Center and Relative Slip Angles
89(1)
3.5 Vehicle Constitutive (Tire) Equations
90(1)
3.6 Vehicle Equilibrium Equations
91(2)
3.6.1 Inertial Terms
92(1)
3.6.2 External Force and Moment
92(1)
3.7 Forces Acting on the Vehicle
93(7)
3.7.1 Weight
93(1)
3.7.2 Aerodynamic Force
93(2)
3.7.3 Road-Tire Friction Forces
95(4)
3.7.4 Road-Tire Vertical Forces
99(1)
3.8 Vehicle Equilibrium Equations (More Explicit Form)
100(2)
3.9 Vertical Loads and Load Transfers
102(2)
3.9.1 Longitudinal Load Transfer
102(1)
3.9.2 Lateral Load Transfers
103(1)
3.9.3 Vertical Load on Each Tire
103(1)
3.10 Suspension First-Order Analysis
104(20)
3.10.1 Suspension Reference Configuration
105(1)
3.10.2 Suspension Internal Coordinates
106(1)
3.10.3 Kinematic Camber Variation
107(1)
3.10.4 Kinematic Track Width Variation
108(1)
3.10.5 Vehicle Internal Coordinates
109(1)
3.10.6 Definition of Roll and Vertical Stiffnesses
109(4)
3.10.7 Suspension Internal Equilibrium
113(1)
3.10.8 Effects of a Lateral Force
113(2)
3.10.9 No-Roll Centers and No-Roll Axis
115(3)
3.10.10 Suspension Jacking
118(1)
3.10.11 Roll Moment
118(2)
3.10.12 Roll Angles and Lateral Load Transfers
120(2)
3.10.13 Explicit Expressions of the Lateral Load Transfers
122(2)
3.10.14 Lateral Load Transfers with Rigid Tires
124(1)
3.11 Sprung and Unsprung Masses
124(1)
3.12 Dependent Suspensions (Solid Axle)
125(3)
3.13 Linked Suspensions
128(1)
3.14 Differential Mechanisms
128(22)
3.14.1 Relative Angular Speeds
130(1)
3.14.2 Torque Balance
130(1)
3.14.3 Internal Efficiency and TBR
131(4)
3.14.4 Locking Coefficient
135(1)
3.14.5 Rule of Thumb
136(2)
3.14.6 A Simple Mathematical Model
138(1)
3.14.7 Alternative Governing Equations
138(1)
3.14.8 Open Differential
139(1)
3.14.9 Limited-Slip Differentials
139(1)
3.14.10 Geared Differentials
140(1)
3.14.11 Clutch-Pack Differentials
141(3)
3.14.12 Spindle Axle
144(1)
3.14.13 Differential-Tire Interaction
144(6)
3.14.14 Informal Summary About the Differential Behavior
150(1)
3.15 Vehicle Model for Handling and Performance
150(7)
3.15.1 Equilibrium Equations
150(2)
3.15.2 Camber Variations
152(1)
3.15.3 Roll Angles
153(1)
3.15.4 Steer Angles
153(1)
3.15.5 Tire Slips
154(1)
3.15.6 Tire Constitutive Equations
155(1)
3.15.7 Differential Mechanism Equations
156(1)
3.15.8 Summary
156(1)
3.16 The Structure of This Vehicle Model
157(1)
3.17 Three-Axle Vehicles
157(3)
3.18 Exercises
160(4)
3.18.1 Center of Curvature QG of the Trajectory of G
160(1)
3.18.2 Track Variation
160(1)
3.18.3 Camber Variation
160(1)
3.18.4 Power Loss in a Self-locking Differential
161(1)
3.18.5 Differential-Tires Interaction
161(3)
3.19 Summary
164(1)
3.20 List of Some Relevant Concepts
165(1)
3.21 Key Symbols
165(2)
References
167(2)
4 Braking Performance 169(20)
4.1 Pure Braking
170(1)
4.2 Vehicle Model for Braking Performance
170(1)
4.3 Equilibrium Equations
171(1)
4.4 Longitudinal Load Transfer
172(1)
4.5 Maximum Deceleration
172(1)
4.6 Brake Balance
173(1)
4.7 All Possible Braking Combinations
173(2)
4.8 Changing the Grip
175(1)
4.9 Changing the Weight Distribution
176(1)
4.10 A Numerical Example
176(1)
4.11 Braking Performance of Formula Cars
177(6)
4.11.1 Equilibrium Equations
177(1)
4.11.2 Vertical Loads
178(1)
4.11.3 Maximum Deceleration
179(1)
4.11.4 Brake Balance
180(1)
4.11.5 Speed Independent Brake Balance
181(1)
4.11.6 Typical Formula 1 Braking Performance
181(2)
4.12 Braking, Stopping, and Safe Distances
183(1)
4.13 Exercises
183(4)
4.13.1 Minimum Braking Distance
183(2)
4.13.2 Braking with Aerodynamic Downforces
185(1)
4.13.3 GP2 Brake Balance
185(1)
4.13.4 Speed Independent Brake Balance
186(1)
4.14 Summary
187(1)
4.15 List of Some Relevant Concepts
187(1)
4.16 Key Symbols
188(1)
References
188(1)
5 The Kinematics of Cornering 189(24)
5.1 Planar Kinematics of a Rigid Body
189(7)
5.1.1 Velocity Field and Velocity Center
190(2)
5.1.2 Acceleration Field and Acceleration Center
192(1)
5.1.3 Inflection Circle and Radii of Curvature
193(3)
5.2 The Kinematics of a Turning Vehicle
196(14)
5.2.1 Moving and Fixed Centrodes of a Turning Vehicle
197(4)
5.2.2 Inflection Circle of a Turning Vehicle
201(4)
5.2.3 Tracking the Curvatures of Front and Rear Midpoints
205(5)
5.2.4 Evolutes
210(1)
5.3 Exercises
210(1)
5.3.1 Front and Rear Radii of Curvature
210(1)
5.3.2 Drawing Centrodes
211(1)
5.4 Key Symbols
211(1)
References
212(1)
6 Handling of Road Cars 213(110)
6.1 Additional Simplifying Assumptions for Road Car Modeling
214(1)
6.1.1 Negligible Vertical Aerodynamic Loads
214(1)
6.1.2 Almost Constant Forward Speed
214(1)
6.1.3 Open Differential
215(1)
6.2 Mathematical Model for Road Car Handling
215(12)
6.2.1 Global Equilibrium
216(1)
6.2.2 Approximate Lateral Forces
217(1)
6.2.3 Lateral Load Transfers and Vertical Loads
218(2)
6.2.4 Roll Angles
220(1)
6.2.5 Camber Angle Variations
220(2)
6.2.6 Steer Angles
222(1)
6.2.7 Tire Slips
223(1)
6.2.8 Simplified Tire Slips
224(2)
6.2.9 Tire Lateral Forces
226(1)
6.3 Double Track Model
227(2)
6.3.1 Governing Equations of the Double Track Model
227(1)
6.3.2 Dynamical Equations of the Double Track Model
228(1)
6.3.3 Alternative State Variables (β and ρ)
228(1)
6.4 Vehicle in Steady-State Conditions
229(2)
6.5 Single Track Model
231(21)
6.5.1 From Double to Single
231(3)
6.5.2 "Forcing" the Lateral Forces
234(1)
6.5.3 Axle Characteristics
235(9)
6.5.4 Governing Equations of the Single Track Model
244(2)
6.5.5 Dynamical Equations of the Single Track Model
246(1)
6.5.6 Alternative State Variables (β and ρ)
247(1)
6.5.7 Inverse Congruence Equations
248(1)
6.5.8 β1 and β2 as State Variables
248(2)
6.5.9 Driving Force
250(1)
6.5.10 The Role of the Steady-State Lateral Acceleration
251(1)
6.5.11 Slopes of the Axle Characteristics
252(1)
6.6 Double Track, or Single Track?
252(1)
6.7 Steady-State Maps
253(8)
6.7.1 Steady-State Gradients
255(1)
6.7.2 Alternative Steady-State Gradients
256(1)
6.7.3 Understeer and Oversteer
256(3)
6.7.4 Handling Diagram
259(2)
6.8 Map of Achievable Performance (MAP)
261(13)
6.8.1 MAP Fundamentals
262(6)
6.8.2 MAP Curvature ρ Versus Steer Angle δ
268(5)
6.8.3 Other Possible MAPS
273(1)
6.9 Weak Concepts in Classical Vehicle Dynamics
274(2)
6.9.1 The Understeer Gradient
275(1)
6.9.2 Popular Definitions of Understeer/Oversteer
276(1)
6.10 Double Track Model in Transient Conditions
276(8)
6.10.1 Equilibrium Points
277(1)
6.10.2 Free Oscillations (No Driver Action)
277(4)
6.10.3 MAP for Transient Behavior
281(1)
6.10.4 Stability of the Equilibrium
282(1)
6.10.5 Forced Oscillations (Driver Action)
282(2)
6.11 Relationship Between Steady-State Data and Transient Behavior
284(6)
6.11.1 Stability Derivatives from Steady-State Gradients
285(2)
6.11.2 Equations of Motion
287(1)
6.11.3 Estimation of the Control Derivatives
288(1)
6.11.4 Objective Evaluation of Car Handling
288(2)
6.12 Stability (Again)
290(1)
6.13 New Understeer Gradient
291(1)
6.14 The Nonlinear Single Track Model Revisited
292(6)
6.14.1 Different Vehicles with Identical Handling
295(3)
6.15 Linear Single Track Model
298(14)
6.15.1 Governing Equations
299(2)
6.15.2 Solution for Constant Forward Speed
301(2)
6.15.3 Critical Speed
303(1)
6.15.4 Transient Vehicle Behavior
303(3)
6.15.5 Steady-State Behavior: Steering Pad
306(1)
6.15.6 Lateral Wind Gust
307(4)
6.15.7 Banked Road
311(1)
6.16 Compliant Steering System
312(3)
6.16.1 Governing Equations
313(1)
6.16.2 Effects of Steer Compliance
314(1)
6.17 Road Vehicles with Locked or Limited Slip Differential
315(1)
6.18 Exercises
315(4)
6.18.1 Camber Variations
315(1)
6.18.2 Ackermann Coefficient
315(1)
6.18.3 Toe-In
316(1)
6.18.4 Steering Angles
316(1)
6.18.5 Axle Characteristics
316(1)
6.18.6 Playing with Linear Differential Equations
317(1)
6.18.7 Static Margin
317(1)
6.18.8 Banked Road
317(1)
6.18.9 Rear Steer
318(1)
6.18.10 Wind Gust
318(1)
6.19 Summary
319(1)
6.20 List of Some Relevant Concepts
320(1)
6.21 Key Symbols
320(2)
References
322(1)
7 Handling of Race Cars 323(54)
7.1 Assumptions for Race Car Handling
323(2)
7.1.1 Aerodynamic Downloads
324(1)
7.1.2 Limited-Slip Differential
324(1)
7.2 Vehicle Model for Race Car Handling
325(12)
7.2.1 Equilibrium Equations
326(2)
7.2.2 Lateral Forces for Dynamic Equilibrium
328(1)
7.2.3 Tire Forces
328(1)
7.2.4 Tire Slips
329(1)
7.2.5 Camber Angles
330(1)
7.2.6 Steer Angles
331(1)
7.2.7 Vertical Loads on Each Wheel
332(1)
7.2.8 Lateral Load Transfers
333(1)
7.2.9 Roll Angles
334(1)
7.2.10 Behavior of the Limited-Slip Differential
334(1)
7.2.11 Reducing the Number of Equations
335(2)
7.3 Double Track Race Car Model
337(1)
7.3.1 Single Track?
337(1)
7.4 Basics for Steady-State Handling Analysis
338(1)
7.5 The Handling Diagram Becomes the Handling Surface
339(13)
7.5.1 Handling with Locked Differential (and No Wings)
339(13)
7.6 Handling of Formula Cars
352(11)
7.6.1 Handling Surface
353(1)
7.6.2 Map of Achievable Performance (MAP)
354(9)
7.7 Exercises
363(9)
7.7.1 Vehicle Kinematic Equations
363(4)
7.7.2 Spin Slip Contributions
367(1)
7.7.3 Acceleration Center K and Acceleration of the Velocity Center C
368(1)
7.7.4 Aerodynamic Downforces
368(1)
7.7.5 Roll Stiffnesses in Formula Cars
369(1)
7.7.6 Lateral Load Transfers in Formula Cars
370(1)
7.7.7 Centrifugal Force not Applied at the Center of Mass
371(1)
7.7.8 Global Aerodynamic Force
371(1)
7.8 Summary
372(1)
7.9 List of Some Relevant Concepts
373(1)
7.10 Key Symbols
373(2)
References
375(2)
8 Map of Achievable Performance (MAP) 377(16)
8.1 MAP Fundamental Idea
377(1)
8.2 Achievable Regions
378(6)
8.2.1 Input Achievable Region
378(4)
8.2.2 Output Achievable Regions
382(2)
8.2.3 Mixed I/O Achievable Regions
384(1)
8.3 Achievable Performances on Input Regions
384(2)
8.4 Achievable Performances on Output Regions
386(1)
8.5 Achievable Performances on Mixed I/O Regions
387(1)
8.6 MAP from Slowly Increasing Steer Tests
388(2)
8.7 MAP from Constant Steer Tests
390(2)
8.8 Concluding Remarks
392(1)
8.9 Key Symbols
392(1)
9 Handling with Roll Motion 393(24)
9.1 Vehicle Position and Orientation
393(1)
9.2 Yaw, Pitch and Roll
394(3)
9.3 Angular Velocity
397(2)
9.4 Angular Acceleration
399(1)
9.5 Vehicle Lateral Velocity
399(6)
9.5.1 Track Invariant Points
399(4)
9.5.2 Vehicle Invariant Point (VIP)
403(1)
9.5.3 Lateral Velocity and Acceleration
404(1)
9.6 Three-Dimensional Vehicle Dynamics
405(5)
9.6.1 Velocity and Acceleration of G
405(2)
9.6.2 Rate of Change of the Angular Momentum
407(1)
9.6.3 Completing the Torque Equation
408(1)
9.6.4 Equilibrium Equations
408(1)
9.6.5 Including the Unsprung Mass
409(1)
9.7 Handling with Roll Motion
410(2)
9.7.1 Equilibrium Equations
410(1)
9.7.2 Load Transfers
410(1)
9.7.3 Constitutive (Tire) Equations
411(1)
9.7.4 Congruence (Kinematic) Equations
411(1)
9.8 Steady-State and Transient Analysis
412(1)
9.9 Exercise
412(1)
9.9.1 Roll Motion and Camber Variation
412(1)
9.10 Summary
413(1)
9.11 List of Some Relevant Concepts
413(1)
9.12 Key Symbols
414(1)
References
415(2)
10 Ride Comfort and Road Holding 417(44)
10.1 Vehicle Models for Ride and Road Holding
418(4)
10.2 Quarter Car Model
422(8)
10.2.1 The Inerter as a Spring Softener
426(1)
10.2.2 Quarter Car Natural Frequencies and Modes
426(4)
10.3 Damper Tuning
430(5)
10.3.1 Optimal Damper for Comfort
430(2)
10.3.2 Optimal Damper for Road Holding
432(1)
10.3.3 The Inerter as a Tool for Road Holding Tuning
433(2)
10.4 More General Suspension Layouts
435(1)
10.5 Road Profiles
436(1)
10.6 Free Vibrations of Road Cars
437(11)
10.6.1 Governing Equations
438(2)
10.6.2 Proportional Viscous Damping
440(1)
10.6.3 Vehicle with Proportional Viscous Damping
441(2)
10.6.4 Principal Coordinates
443(2)
10.6.5 Selection of Front and Rear Suspension Vertical Stiffnesses
445(3)
10.7 Tuning of Suspension Stiffnesses
448(4)
10.7.1 Optimality of Proportional Damping
449(1)
10.7.2 A Numerical Example
450(2)
10.8 Non-proportional Damping
452(1)
10.9 Interconnected Suspensions
453(3)
10.10 Exercises
456(1)
10.10.1 Playing with η
456(1)
10.10.2 Playing with ρ
456(1)
10.11 Summary
457(1)
10.12 List of Some Relevant Concepts
457(1)
10.13 Key Symbols
457(2)
References
459(2)
11 Tire Models 461(78)
11.1 Brush Model Definition
461(14)
11.1.1 Roadway and Rim
462(1)
11.1.2 Shape of the Contact Patch
463(1)
11.1.3 Pressure Distribution and Vertical Load
464(2)
11.1.4 Force-Couple Resultant
466(1)
11.1.5 Elastic Compliance of the Tire Carcass
467(1)
11.1.6 Friction
468(1)
11.1.7 Constitutive Relationship
469(1)
11.1.8 Kinematics
470(2)
11.1.9 Brush Model Slips
472(1)
11.1.10 Sliding Velocity of the Bristle Tips
473(1)
11.1.11 Summary of Relevant Velocities
474(1)
11.2 General Governing Equations of the Brush Model
475(3)
11.2.1 Data for Numerical Examples
478(1)
11.3 Brush Model Steady-State Behavior
478(10)
11.3.1 Steady-State Governing Equations
479(1)
11.3.2 Adhesion and Sliding Zones
479(4)
11.3.3 Force-Couple Resultant
483(1)
11.3.4 Examples of Tangential Stress Distributions
484(4)
11.4 Adhesion Everywhere (Linear Behavior)
488(3)
11.5 Translational Slip Only (σ not equal to 0, φ = 0)
491(19)
11.5.1 Rectangular Contact Patch
498(9)
11.5.2 Elliptical Contact Patch
507(3)
11.6 Wheel with Pure Spin Slip (σ = 0, φ not equal to 0)
510(3)
11.7 Wheel with Both Translational and Spin Slips
513(6)
11.7.1 Rectangular Contact Patch
513(2)
11.7.2 Elliptical Contact Patch
515(4)
11.8 Brush Model Transient Behavior
519(13)
11.8.1 Transient Models with Carcass Compliance Only
521(4)
11.8.2 Transient Model with Carcass and Tread Compliance
525(2)
11.8.3 Model Comparison
527(2)
11.8.4 Selection of Tests
529(1)
11.8.5 Longitudinal Step Input
529(2)
11.8.6 Lateral Step Input
531(1)
11.9 Exercises
532(4)
11.9.1 Braking or Driving?
532(1)
11.9.2 Carcass Compliance
532(1)
11.9.3 Brush Model: Local, Linear, Isotropic, Homogeneous
532(1)
11.9.4 Anisotropic Brush Model
532(1)
11.9.5 Carcass Compliance 2
533(1)
11.9.6 Skating Versus Sliding
533(1)
11.9.7 Skating Slip
533(1)
11.9.8 Simplest Brush Model
534(1)
11.9.9 Velocity Relationships
534(1)
11.9.10 Slip Stiffness Reduction
534(1)
11.9.11 Total Sliding
535(1)
11.9.12 Spin Slip and Camber Angle
535(1)
11.9.13 The Right Amount of Camber
535(1)
11.9.14 Slip Stiffness
536(1)
11.10 Summary
536(1)
11.11 List of Some Relevant Concepts
536(1)
11.12 Key Symbols
537(1)
References
538
Correction to: The Science of Vehicle Dynamics C1
Index 539
Massimo Guiggiani is professor of Applied Mechanics at the Universitą di Pisa, Italy, where he also teaches Vehicle Dynamics in the MS degree program in Vehicle Engineering.