Atjaunināt sīkdatņu piekrišanu

E-grāmata: SCION: A Secure Internet Architecture

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book describes the essential components of the SCION secure Internet architecture, the first architecture designed foremost for strong security and high availability. Among its core features, SCION also provides route control, explicit trust information, multipath communication, scalable quality-of-service guarantees, and efficient forwarding. The book includes functional specifications of the network elements, communication protocols among these elements, data structures, and configuration files. In particular, the book offers a specification of a working prototype.

The authors provide a comprehensive description of the main design features for achieving a secure Internet architecture. They facilitate the reader throughout, structuring the book so that the technical detail gradually increases, and supporting the text with a glossary, an index, a list of abbreviations, answers to frequently asked questions, and special highlighting for examples and for sections that explain important research, engineering, and deployment features. The book is suitable for researchers, practitioners, and graduate students who are interested in network security.

Recenzijas

This book summarizes many years, almost a decade, of research and development on SCION. The reader is brought up to speed with the current state of the Internet, the threat landscape vs. the underlying networking and routing protocols that were designed when the threat landscape was much different. this is a great book for understanding where we are in today's Internet, and what we need to consider for moving forward. (Sven Dietrich, Cipher, ieee-security.org, Issue 144, June, 04, 2018) The writing is precise and easy to comprehend for those who know the underlying principles. This book must be included in the essential literature study for researchers formulating problems and comprehending trends related to redesigning the Internet. It is a well-suited reference book for a semester course, with lab work for advanced students of networking/data communication design. This book does a fantastic job of presenting the SCION teams decade-long work. For aspiring SCION collaborators, it is a treasure. (Sundara Nagarajan, Computing Reviews, November, 2018)

Foreword xi
Preface xv
I Overview
1(58)
1 Introduction
3(14)
1.1 Today's Internet
3(5)
1.2 Goals of a Secure Internet Architecture
8(5)
1.3 Future Internet Architectures
13(4)
2 The SCION Architecture
17(26)
2.1 Control Plane
21(4)
2.2 Data Plane
25(2)
2.3 Security Aspects
27(4)
2.4 Use Cases
31(3)
2.5 Incentives for Stakeholders
34(2)
2.6 Deployment
36(3)
2.7 Extensions
39(1)
2.8 Main Contributions
39(4)
3 Isolation Domains (ISDs)
43(16)
3.1 Why Isolation?
43(4)
3.2 The ISD Core
47(1)
3.3 Coordination Among ISDs
48(1)
3.4 Name Resolution
48(3)
3.5 ISD Governance Models
51(5)
3.6 Nested Isolation Domains
56(3)
II SCION in Detail
59(182)
4 Authentication Infrastructure
61(32)
4.1 Overview
61(7)
4.2 Control-Plane Authentication
68(15)
4.3 Name Authentication
83(3)
4.4 End-Entity Authentication
86(7)
5 ISD Coordination
93(8)
5.1 Motivation and Objectives
94(3)
5.2 Announcing and Discovering New ISDs
97(3)
5.3 Local Resolution of Conflicts
100(1)
6 Name Resolution
101(18)
6.1 Background
102(2)
6.2 Name Resolution Architecture
104(2)
6.3 Naming Information Model
106(8)
6.4 The RAINS Protocol
114(2)
6.5 The Naming Consistency Observer (NCO)
116(3)
7 Control Plane
119(42)
7.1 Path Exploration and Registration
119(13)
7.2 Path Lookup
132(6)
7.3 Secure Path Revocation
138(8)
7.4 Failure Resilience and Service Discovery
146(7)
7.5 AS-Level Anycast Service
153(2)
7.6 SCION Control Message Protocol (SCMP)
155(4)
7.7 Time Synchronization
159(2)
8 Data Plane
161(18)
8.1 Path Format
162(2)
8.2 Creation of Forwarding Paths
164(10)
8.3 Efficient Path Construction
174(5)
9 Host Structure
179(12)
9.1 SCION Dispatcher
179(4)
9.2 SCION Daemon
183(2)
9.3 Transmission Control Protocol (TCP/SCION)
185(3)
9.4 SCION Stream Protocol (SSP)
188(3)
10 Deployment and Operation
191(50)
10.1 ISP Deployment
191(8)
10.2 End-Domain Deployment
199(2)
10.3 The SCION-IP Gateway (SIG)
201(10)
10.4 How to Try Out SCION
211(4)
10.5 SCION AS Management Framework
215(3)
10.6 Deploying a New AS
218(2)
10.7 The SCIONLab Experimentation Environment
220(3)
10.8 Example: Life of a SCION Data Packet
223(7)
10.9 SCION Path Policy
230(11)
III Extensions
241(58)
11 SIBRA
243(36)
11.1 Motivation and Introduction
244(1)
11.2 Goals and Adversary Model
245(2)
11.3 Design Overview
247(3)
11.4 SIBRA Core Paths
250(9)
11.5 SIBRA Steady Paths
259(2)
11.6 SIBRA Ephemeral Paths
261(7)
11.7 Priority Traffic Monitoring and Policing
268(4)
11.8 Use Cases
272(1)
11.9 Discussion
273(3)
11.10 Further Reading
276(3)
12 OPT and DRKey
279(20)
12.1 Introduction
280(1)
12.2 OPT Problem Definition
281(2)
12.3 OPT Design Overview
283(3)
12.4 OPT Protocol Description
286(5)
12.5 Dynamically Recreatable Keys (DRKey)
291(8)
IV Analysis and Evaluation
299(40)
13 Security Analysis
301(30)
13.1 Security Goals
302(2)
13.2 Threat Model
304(1)
13.3 Software Security
305(2)
13.4 Control-Plane Path Manipulation
307(5)
13.5 Data-Plane Path Manipulation
312(6)
13.6 Censorship and Surveillance
318(2)
13.7 Attacks Against Availability
320(5)
13.8 Absence of Kill Switches
325(2)
13.9 Resilience to Path Hijacking
327(3)
13.10 Summary
330(1)
14 Power Consumption
331(8)
14.1 Modeling Power Consumption of an FIA Router
332(2)
14.2 Simulation
334(5)
V Specification
339(48)
15 Packet and Message Formats
341(28)
15.1 SCION Packet
341(14)
15.2 Control Plane
355(1)
15.3 PCB and Path Segment
356(5)
15.4 Path Management Messages
361(1)
15.5 PKI Interactions
362(1)
15.6 SCMP Packet
363(6)
16 Configuration File Formats
369(12)
16.1 Trust Root Configuration
369(1)
16.2 AS Certificates
370(4)
16.3 Discovery Service Configuration
374(2)
16.4 Router, Server, and End-Host Configuration
376(5)
17 Cryptographic Algorithms
381(6)
17.1 Algorithm Agility
381(3)
17.2 Symmetric Primitives
384(1)
17.3 Asymmetric Primitives
385(1)
17.4 Post-Quantum Cryptography
386(1)
Bibliography 387(22)
Frequently Asked Questions 409(8)
Glossary 417(4)
Abbreviations 421(2)
Index 423
Prof. Dr. Adrian Perrig is the director of the Network Security Group at ETH Zürich, where Laurent Chuat is a Ph.D. student. Dr. Pawel Szalachowski is an assistant professor at the Singapore University of Technology and Design, he was previously a member of the ETHZ Network Security Group. Dr. Raphael M. Reischuk works at Zühlke Engineering AG, he was previously a member of the ETHZ Network Security Group.