Foreword |
|
xv | |
Acknowledgements |
|
xvii | |
|
|
xix | |
|
|
xxiv | |
|
|
1 | (5) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (3) |
|
|
6 | (20) |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
8 | (1) |
|
2.2.2 Hydraulic conditions |
|
|
9 | (1) |
|
2.2.3 Morphological conditions |
|
|
10 | (1) |
|
2.2.4 Geotechnical conditions |
|
|
10 | (1) |
|
|
10 | (6) |
|
|
10 | (2) |
|
2.3.2 Fault tree analysis |
|
|
12 | (2) |
|
|
14 | (1) |
|
2.3.4 Failure probability approach |
|
|
15 | (1) |
|
|
16 | (3) |
|
|
16 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
2.4.4 Other counter measures |
|
|
19 | (1) |
|
|
19 | (7) |
|
|
19 | (1) |
|
2.5.2 Determination of the length of a bed protection with a reliability index |
|
|
20 | (1) |
|
2.5.3 Determination of the failure probability using a FORM approach |
|
|
21 | (3) |
|
2.5.4 Determination scour depth using a safety factor |
|
|
24 | (2) |
|
|
26 | (31) |
|
|
26 | (1) |
|
3.2 Mathematical scour and erosion models |
|
|
26 | (6) |
|
|
26 | (1) |
|
|
27 | (1) |
|
3.2.3 Large-scale RANS models |
|
|
28 | (1) |
|
3.2.3.1 Shallow water modelling |
|
|
28 | (1) |
|
3.2.3.2 Turbulence modelling |
|
|
29 | (1) |
|
3.2.4 High-resolution hydrodynamic models |
|
|
29 | (1) |
|
3.2.4.1 Hydrodynamic model LES |
|
|
29 | (1) |
|
3.2.4.2 Application of LES |
|
|
29 | (1) |
|
3.2.4.3 Hydrodynamic model DNS |
|
|
30 | (1) |
|
3.2.5 Particle-based multiphase models |
|
|
31 | (1) |
|
3.2.5.1 Soil mechanics: MPM |
|
|
31 | (1) |
|
3.2.5.2 Hydraulic model: SPH |
|
|
31 | (1) |
|
|
32 | (5) |
|
|
32 | (1) |
|
3.3.2 Overall degradation or aggradation |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (7) |
|
|
37 | (2) |
|
3.4.2 Time-dependent scour |
|
|
39 | (2) |
|
|
41 | (2) |
|
3.4.4 Conditions of transport |
|
|
43 | (1) |
|
|
44 | (11) |
|
|
44 | (2) |
|
|
46 | (1) |
|
3.5.3 Effects of groundwater flow |
|
|
47 | (1) |
|
3.5.4 Non-homogeneous subsoils |
|
|
48 | (2) |
|
3.5.5 Upstream and side slopes |
|
|
50 | (3) |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
55 | (1) |
|
|
55 | (1) |
|
3.6.3 Critical slope angles and failure lengths |
|
|
55 | (2) |
|
|
57 | (31) |
|
|
57 | (1) |
|
4.2 Flow and turbulence characteristics |
|
|
57 | (6) |
|
|
57 | (3) |
|
|
60 | (1) |
|
4.2.3 Bridge piers and abutments |
|
|
61 | (1) |
|
4.2.4 Indicative values of flow velocity and turbulence |
|
|
62 | (1) |
|
4.3 Non-cohesive sediments |
|
|
63 | (8) |
|
|
63 | (2) |
|
|
65 | (2) |
|
|
67 | (2) |
|
4.3.4 Critical flow velocity |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (11) |
|
|
71 | (1) |
|
4.4.2 Critical shear stress |
|
|
72 | (1) |
|
4.4.3 Critical flow velocity |
|
|
73 | (4) |
|
4.4.4 Empirical shear stress formulas |
|
|
77 | (3) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (6) |
|
|
82 | (1) |
|
4.5.2 Turbulence at bridge piers and groynes |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
4.5.3 Critical flow velocity of peat |
|
|
84 | (1) |
|
4.5.4 Critical mean flow velocity and critical bed shear stress in an open channel with sand dunes |
|
|
85 | (1) |
|
4.5.5 Critical depth-averaged flow velocity according to Mirtskhoulava (1988) |
|
|
86 | (1) |
|
4.5.6 Comparison critical strength of clay |
|
|
86 | (2) |
|
|
88 | (32) |
|
|
88 | (1) |
|
|
88 | (4) |
|
|
88 | (1) |
|
|
88 | (2) |
|
|
90 | (2) |
|
5.3 Time scale of jet scour |
|
|
92 | (1) |
|
|
93 | (4) |
|
|
93 | (1) |
|
5.4.2 Calculation methods |
|
|
93 | (3) |
|
|
96 | (1) |
|
5.5 Two-dimensional culverts |
|
|
97 | (4) |
|
|
97 | (1) |
|
5.5.2 Calculation methods |
|
|
97 | (4) |
|
|
101 | (1) |
|
5.6 Three-dimensional culverts |
|
|
101 | (4) |
|
|
101 | (1) |
|
5.6.2 Calculation methods |
|
|
102 | (3) |
|
|
105 | (1) |
|
5.7 Ship-induced flow and erosion |
|
|
105 | (5) |
|
|
105 | (1) |
|
5.7.2 Scour due to the return current of a sailing vessel |
|
|
106 | (1) |
|
5.7.3 Scour due to propeller and thruster jets |
|
|
107 | (2) |
|
|
109 | (1) |
|
5.8 Scour at broken pipelines |
|
|
110 | (1) |
|
|
110 | (4) |
|
|
114 | (6) |
|
|
114 | (1) |
|
5.10.2 Two-dimensional scour downstream a broad-crested sill |
|
|
114 | (1) |
|
5.10.3 Three-dimensional scour downstream a short-crested overflow weir |
|
|
115 | (2) |
|
5.10.4 Two-dimensional scour downstream an under flow gate |
|
|
117 | (3) |
|
|
120 | (32) |
|
|
120 | (1) |
|
|
120 | (3) |
|
6.3 Scour depth modelling in the Netherlands |
|
|
123 | (15) |
|
|
123 | (2) |
|
6.3.2 Scour depth formula |
|
|
125 | (2) |
|
6.3.3 Characteristic time |
|
|
127 | (2) |
|
6.3.4 Relative turbulence intensity |
|
|
129 | (1) |
|
|
130 | (3) |
|
|
133 | (2) |
|
6.3.7 Upstream supply of sediment |
|
|
135 | (3) |
|
6.4 Upstream scour slopes |
|
|
138 | (2) |
|
|
138 | (1) |
|
6.4.2 Hydraulic and morphological stability criterion |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (6) |
|
|
141 | (1) |
|
6.6.2 Hydraulic and geotechnical conditions |
|
|
141 | (1) |
|
|
142 | (1) |
|
6.6.3.1 Upstream scour slope |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
6.6.3.4 Equilibrium scour depth |
|
|
145 | (1) |
|
6.6.3.5 Evaluation brouwers dam experiments |
|
|
145 | (1) |
|
6.6.4 Experiences Eastern Scheldt |
|
|
145 | (2) |
|
|
147 | (5) |
|
|
147 | (1) |
|
6.7.2 Critical upstream scour slope downstream a sill |
|
|
147 | (5) |
|
|
152 | (27) |
|
|
152 | (1) |
|
7.2 Geometry characteristics and flow patterns |
|
|
152 | (7) |
|
|
152 | (2) |
|
7.2.2 Wing-wall abutments |
|
|
154 | (1) |
|
7.2.3 Spill-through abutments |
|
|
154 | (2) |
|
7.2.4 Vertical-wall abutments |
|
|
156 | (1) |
|
|
156 | (3) |
|
|
159 | (4) |
|
|
159 | (1) |
|
|
159 | (2) |
|
|
161 | (2) |
|
7.4 Equilibrium scour depth |
|
|
163 | (6) |
|
|
163 | (1) |
|
7.4.2 Calculation methods |
|
|
164 | (5) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
7.5.2 Combined local scour and constriction or bend scour |
|
|
170 | (1) |
|
7.6 Failure mechanism and measures to prevent local scour |
|
|
170 | (5) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
175 | (4) |
|
|
175 | (1) |
|
7.7.2 Scour due to lowering of existing abutments |
|
|
175 | (2) |
|
7.7.3 Influence of the permeability of an abutment on the scour |
|
|
177 | (2) |
|
|
179 | (31) |
|
|
179 | (1) |
|
8.2 Characteristic flow pattern |
|
|
179 | (3) |
|
|
179 | (2) |
|
|
181 | (1) |
|
|
182 | (3) |
|
8.4 Equilibrium scour depth |
|
|
185 | (6) |
|
|
185 | (1) |
|
8.4.2 Calculation methods |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
190 | (1) |
|
8.5 Effects of specific parameters |
|
|
191 | (5) |
|
|
191 | (1) |
|
|
192 | (1) |
|
8.5.3 Alignment of the pier to the flow |
|
|
192 | (2) |
|
8.5.4 Gradation of bed material |
|
|
194 | (1) |
|
|
194 | (2) |
|
|
196 | (5) |
|
|
196 | (1) |
|
8.6.2 Single cylindrical pier |
|
|
196 | (1) |
|
8.6.3 Other types of piers |
|
|
197 | (3) |
|
|
200 | (1) |
|
8.7 Measures to prevent local scour |
|
|
201 | (2) |
|
|
201 | (1) |
|
|
201 | (1) |
|
8.7.3 Mattress protection |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
203 | (7) |
|
|
203 | (1) |
|
8.8.2 Local scour around bridge piers |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (5) |
|
9 Case studies on prototype scale |
|
|
210 | (57) |
|
|
210 | (1) |
|
9.2 Camden motorway bypass bridge pier scour assessment (RHDHV) |
|
|
210 | (10) |
|
|
210 | (1) |
|
9.2.2 Assessment of scour |
|
|
211 | (2) |
|
9.2.3 Scour assessment results |
|
|
213 | (1) |
|
|
213 | (2) |
|
|
215 | (1) |
|
|
215 | (1) |
|
9.2.7 Numerical Model Verification |
|
|
216 | (1) |
|
|
217 | (2) |
|
|
219 | (1) |
|
9.3 Project Waterdunen (Svasek) |
|
|
220 | (6) |
|
|
220 | (1) |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
222 | (3) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
9.3.5.3 Sensitivity calculations |
|
|
226 | (1) |
|
|
226 | (1) |
|
9.4 Full-scale erosion test propeller jet (Deme) |
|
|
226 | (4) |
|
|
226 | (1) |
|
9.4.2 Objective of the full-scale erosion tests and estimated flow field |
|
|
226 | (1) |
|
9.4.3 Scour prediction methods |
|
|
227 | (2) |
|
|
229 | (1) |
|
9.5 Scour due to ship thrusters in the Rotterdam port area (Port of Rotterdam) |
|
|
230 | (11) |
|
|
230 | (2) |
|
9.5.2 Full-scale test with inland vessels at the Parkkade |
|
|
232 | (1) |
|
|
232 | (1) |
|
9.5.2.2 Observed scour depth versus predictions with Breusers formulas |
|
|
233 | (2) |
|
9.5.2.3 Observed versus predicted scour for thrusters with PIANC formulas |
|
|
235 | (2) |
|
|
237 | (1) |
|
9.5.3 Scour due to operational use of Maasvlakte quay wall for large seagoing container vessels |
|
|
238 | (1) |
|
|
238 | (2) |
|
|
240 | (1) |
|
|
240 | (1) |
|
9.6 Crossing of high voltage power line (Witteveen & Bos) |
|
|
241 | (4) |
|
|
241 | (1) |
|
9.6.2 Scour for a single pier |
|
|
241 | (2) |
|
9.6.3 Scour for multiple piers |
|
|
243 | (2) |
|
9.6.4 Results and discussion |
|
|
245 | (1) |
|
9.7 Scour development in front of culvert (van Oord) |
|
|
245 | (6) |
|
|
245 | (2) |
|
9.7.2 Initial bottom protection and scouring |
|
|
247 | (2) |
|
9.7.3 New design bottom protection |
|
|
249 | (2) |
|
|
251 | (1) |
|
9.8 Bed protection at railway bridge in a bypass of the river Waal (Deltares) |
|
|
251 | (3) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
9.8.4 Designed bed protection |
|
|
253 | (1) |
|
|
253 | (1) |
|
9.9 Pressure scour around bridge piers (Arcadis) |
|
|
254 | (6) |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (2) |
|
9.10 Bed protection at the weir at Grave in the river Meuse (Rijkswaterstaat) |
|
|
260 | (7) |
|
|
260 | (1) |
|
|
260 | (2) |
|
|
262 | (1) |
|
9.10.4 Scour and bed protection |
|
|
263 | (1) |
|
9.10.5 Condition after the flood |
|
|
264 | (1) |
|
|
265 | (2) |
References |
|
267 | |