Atjaunināt sīkdatņu piekrišanu

E-grāmata: Security and Data Reliability in Cooperative Wireless Networks

  • Formāts: 529 pages
  • Izdošanas datums: 27-Apr-2018
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351603157
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 56,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 529 pages
  • Izdošanas datums: 27-Apr-2018
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351603157
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Following a detailed overview of cooperative communications and the physical layer security, this book proposes relay and jammer selection schemes for security in one-way cooperative networks and to improve physical layer security in two-way cooperative networks. It also proposes a Cooperative Hybrid Self-Healing scheme to enhance the confidentiality of the data collected by UWSN. It ends with a proposal called Self-Healing Cluster Controlled Mobility (SH-CCM) scheme based on hybrid cooperation between both Proactive and Reactive peers and the sick sensors at both network and cluster levels to guarantee the security in UWSN.

Preface xiii
List of Abbreviations
xvii
List of Symbols
xix
About the Author xxiii
Acknowledgments xxv
1 Introduction
1(12)
1.1 Cooperative Wireless Networks
1(1)
1.1.1 Cooperative Communications Idea
2(1)
1.1.2 Physical Layer Security Idea
2(1)
1.2 Wireless Sensor Networks
2(3)
1.2.1 Unattended Wireless Sensor Networks
3(2)
1.3 Motivation
5(1)
1.4 Problem Statement
6(1)
1.5 Book Objectives and Contributions
6(3)
1.6 Book Outline
9(4)
SECTION I SECURITY IN COOPERATIVE WIRELESS NETWORKS
2 Overview of Cooperative Communications in Wireless Systems
13(24)
2.1 Introduction
13(1)
2.2 Characteristics of Wireless Channels
14(5)
2.2.1 Path Loss
14(1)
2.2.2 Shadowing
15(1)
2.2.3 Fading
15(1)
2.2.3.1 Multipath Propagation
16(1)
2.2.3.2 Doppler Frequency Shift
17(2)
2.3 Common and Cooperative Diversity
19(4)
2.3.1 Common Diversity Techniques
19(2)
2.3.2 MIMO Systems
21(1)
2.3.3 Cooperative Diversity
22(1)
2.4 Classical Relay Channel
23(1)
2.5 Cooperative Communications
24(1)
2.5.1 Working Principle
24(1)
2.5.2 Historical Background
24(1)
2.6 Cooperation Protocols
25(5)
2.6.1 Fixed Cooperation Strategies
26(1)
2.6.1.1 Fixed AF Relaying Protocol
26(1)
2.6.1.2 Fixed DF Relaying Protocol
27(1)
2.6.1.3 CF Cooperation
28(1)
2.6.1.4 Coded Cooperation
28(1)
2.6.2 Adaptive Cooperation Strategies
29(1)
2.6.2.1 Selective DF Relaying
29(1)
2.6.2.2 Incremental Relaying
30(1)
2.7 Cooperative Diversity Based on Relay Selection
30(4)
2.7.1 Relay Selection Metrics
30(1)
2.7.1.1 Reactive Opportunistic Relaying
31(1)
2.7.1.2 Proactive Opportunistic Relaying
32(1)
2.7.2 Relay Selection Implementation
33(1)
2.7.2.1 Destination-Driven Protocol
33(1)
2.7.2.2 Relay-Driven Protocol
34(1)
2.8 Application Scenarios
34(1)
2.8.1 Virtual Antenna Array
34(1)
2.8.2 Wireless Sensor Network
34(1)
2.8.3 Wireless Ad Hoc Network
35(1)
2.8.4 Vehicle-to-Vehicle Communication
35(1)
2.8.5 Cooperative Sensing for Cognitive Radio
35(1)
2.9 Pros and Cons of Cooperation
35(2)
2.9.1 Cooperation Advantages
35(1)
2.9.2 Cooperation Disadvantages
36(1)
3 Physical Layer Security in Wireless Networks
37(14)
3.1 Introduction
37(1)
3.2 Why Physical Layer Security
38(1)
3.3 Secrecy Fundamentals
38(4)
3.3.1 Key-Based Security for Wireless Channels
39(1)
3.3.2 Keyless Security for Wireless Channels
40(1)
3.3.3 General Wiretap Channel
40(1)
3.3.4 Gaussian Wiretap Channel
41(1)
3.4 Cooperative Secrecy Techniques for the Physical Layer
42(4)
3.4.1 Cooperative Jamming with Gaussian Noise
42(1)
3.4.2 Cooperative Jamming with Noise Forwarding
43(1)
3.4.3 Cooperative Jamming with Structured Codes
44(1)
3.4.4 Cooperative Jamming by Alignment
45(1)
3.5 Cooperative Jamming for Secure Relay Networks
46(5)
3.5.1 Secrecy in View of Trusted Relays
46(3)
3.5.2 Secrecy in View of Untrusted Relays
49(2)
4 Relay and Jammer Selection Schemes for Secure One-Way Cooperative Networks
51(24)
4.1 Introduction
51(2)
4.2 System Model and Problem Formulation
53(3)
4.2.1 Presence of One Eavesdropper
53(1)
4.2.1.1 System Model
53(1)
4.2.1.2 Problem Formulation
54(1)
4.2.2 Presence of Multiple Eavesdroppers
55(1)
4.2.2.1 System Model
55(1)
4.2.2.2 Problem Formulation
56(1)
4.3 Relay and Jammer Selection Schemes
56(7)
4.3.1 Presence of One Eavesdropper
57(1)
4.3.1.1 Selection Schemes without Jamming
57(1)
4.3.1.2 Selection Schemes with Conventional Jamming
57(2)
4.3.1.3 Selection Schemes with Controlled Jamming
59(1)
4.3.1.4 Hybrid Selection Schemes
60(1)
4.3.2 Presence of Multiple Eavesdroppers
61(1)
4.3.2.1 Selection Schemes without Jamming
61(1)
4.3.2.2 Selection Schemes with Conventional Jamming
61(1)
4.3.2.3 Selection Schemes with Controlled Jamming
62(1)
4.4 Numerical Results and Discussion
63(10)
4.4.1 Impact of Changing the N-Relays Set Location with Respect to the Destination and the Eavesdropper
63(5)
4.4.2 Impact of Changing the Eavesdropper Location with Respect to the Source and the Destination
68(2)
4.4.3 Impact of the Presence of Multiple Eavesdroppers
70(3)
4.5 Conclusion
73(2)
5 Relay and Jammer Selection Schemes for Secure Two-Way Cooperative Networks
75(32)
5.1 Introduction
75(3)
5.1.1 Related Work
76(1)
5.1.2
Chapter Contributions
77(1)
5.2 Network Model and Assumptions
78(4)
5.2.1 Single Eavesdropper Model
78(1)
5.2.1.1 Network Model
78(1)
5.2.1.2 Problem Formulation
79(1)
5.2.2 Multiple Eavesdroppers Model
80(1)
5.2.2.1 Network Model
80(1)
5.2.2.2 Problem Formulation
81(1)
5.3 The Proposed Relay and Jammer Selection Schemes
82(9)
5.3.1 Selection Schemes in the Presence of One Eavesdropper
82(1)
5.3.1.1 Selection Schemes without Jamming
82(3)
5.3.1.2 Selection Schemes with Conventional Jamming
85(2)
5.3.1.3 Selection Schemes with Controlled Jamming
87(1)
5.3.1.4 Hybrid Selection Schemes
87(2)
5.3.2 Selection Schemes in the Presence of Multiple Eavesdroppers
89(1)
5.3.2.1 Selection Schemes with Noncooperating Eavesdroppers
89(1)
5.3.2.2 Selection Schemes with Cooperating Eavesdroppers
90(1)
5.4 Numerical Results and Discussion
91(12)
5.4.1 Secrecy Performance for the Single Eavesdropper Model
91(1)
5.4.1.1 Secrecy Performance When Changing the N-Relays Set Location in the Considered Area
91(9)
5.4.1.2 Secrecy Performance When Changing the Eavesdropper Location with Respect to the Two Sources (S1and S2)
100(1)
5.4.2 Secrecy Performance for the Multiple Eavesdroppers Model
101(2)
5.5 Conclusion
103(4)
SECTION II SECURITY AND DATA RELIABILITY IN WIRELESS SENSOR NETWORKS
6 Overview on Sensor Networks
107(16)
6.1 Wireless Sensor Network
107(7)
6.1.1 Types of WSNs
108(1)
6.1.1.1 Deployment Classification
109(1)
6.1.1.2 Environment Classification
109(1)
6.1.2 WSN Modes of Operation
110(1)
6.1.3 WSN Applications
110(1)
6.1.3.1 Industrial Control and Monitoring
111(1)
6.1.3.2 Security and Military Sensing Applications
111(1)
6.1.3.3 Intelligent Agriculture and Environmental Sensing Applications
111(1)
6.1.3.4 Health Monitoring Applications
111(1)
6.1.3.5 Home Automation and Consumer Electronics
112(1)
6.1.3.6 Other Commercial Applications
112(1)
6.1.4 Factors Influencing Sensor Network Design
112(1)
6.1.4.1 Fault Tolerance
112(1)
6.1.4.2 Scalability
112(1)
6.1.4.3 Production Costs
113(1)
6.1.4.4 Hardware Constraints
113(1)
6.2 Unattended WSN
114(9)
6.2.1 Advantages of UWSN
115(1)
6.2.1.1 Robustness/Ability to Withstand Rough Environmental Conditions
115(1)
6.2.1.2 Ability to Cover Wide and Dangerous Areas
115(1)
6.2.1.3 Self-Organizing
116(1)
6.2.1.4 Ability to Master Node Failures
116(1)
6.2.1.5 Mobility of Nodes
116(1)
6.2.1.6 Dynamic Network Topology
116(1)
6.2.1.7 Heterogeneity of Nodes
116(1)
6.2.1.8 Multihop Communication
116(1)
6.2.1.9 Unattended Operation
117(1)
6.2.2 Disadvantages of UWSN
117(1)
6.2.2.1 Limited Energy Resources
117(1)
6.2.2.2 Lower Data Rates
117(1)
6.2.2.3 Communication Failures
117(1)
6.2.2.4 Security Issues
117(1)
6.2.3 Applications of UWSNs
118(1)
6.2.4 Mobile Adversary
119(1)
6.2.5 Security Goals
120(1)
6.2.6 Security Challenges
121(1)
6.2.7 Possible Attacks on Nodes
122(1)
7 Cooperative Hybrid Self-Healing Randomized Distributed Scheme for UWSN Security
123(26)
7.1 Introduction
123(1)
7.2 Overview of UWSN Security Challenges
124(2)
7.3 UWSN System Model
126(3)
7.3.1 Network Model
126(1)
7.3.2 Adversary Model
127(1)
7.3.3 Data Secrecy
127(1)
7.3.4 Sensor States
128(1)
7.4 CHSHRD Scheme
129(12)
7.4.1 CHSHRD Scheme Steps
130(6)
7.4.2 Analytical Model of CHSHRD Scheme
136(1)
7.4.2.1 Proactive Peers
136(1)
7.4.2.2 Reactive Peers
137(4)
7.5 Numerical Results and Discussions
141(6)
7.5.1 Theoretical Results
141(2)
7.5.2 Simulation Results
143(4)
7.6 Summary
147(2)
8 Self-Healing Cluster Controlled Mobility Scheme for Self-Healing Enhancement
149(30)
8.1 Introduction
149(2)
8.2 Network Model and Assumptions
151(2)
8.2.1 Network Model
151(1)
8.2.2 Sensor States
152(1)
8.2.3 Compromising and Data Secrecy
153(1)
8.3 SH-CCM Simulation Analysis
153(6)
8.4 SH-CCM Scheme Analytical Analysis
159(9)
8.4.1 Network Level Analysis
161(3)
8.4.2 Cluster Level Analysis
164(4)
8.5 Results and Discussion
168(9)
8.5.1 Simulation Results
168(4)
8.5.2 Analytical Results
172(5)
8.6 Summary
177(2)
9 Self-Healing Single Flow Controlled Mobility within a Cluster Scheme for Energy Aware Self-Healing
179(20)
9.1 Introduction
179(2)
9.2 System Model and Assumptions
181(2)
9.2.1 Network Model
181(1)
9.2.2 Adversary Model
181(1)
9.2.3 Mobility Model
181(1)
9.2.4 Energy Models
182(1)
9.2.4.1 Energy Communication Model
182(1)
9.2.4.2 Energy Motion Model
183(1)
9.3 Trade-Off between Mobility and Other Network Aspects
183(1)
9.4 Proposed SH-SFCCM Scheme
184(6)
9.5 Simulation Setup and Performance Evaluation
190(7)
9.5.1 Simulation Setup
190(1)
9.5.2 Performance Evaluation
191(1)
9.5.2.1 Impact of Mobility Energy Consumption
191(1)
9.5.2.2 Extensive Analysis of SH-SFCMC
192(5)
9.6 Summary
197(2)
10 Conclusion and Future Work
199(6)
10.1 Part One Conclusion
199(2)
10.2 Part Two Conclusion
201(1)
10.3 Future Work
202(3)
Appendix A MATLAB® Simulation Codes for
Chapter 4
205(42)
Appendix B MATLAB® Simulation Codes for
Chapter 5
247(60)
Appendix C MATLAB® Simulation Codes for
Chapter 7
307(58)
Appendix D MATLAB® Simulation Codes for
Chapter 8
365(80)
Appendix E MATLAB® Simulation Codes for
Chapter 9
445(36)
References 481(14)
Index 495
Dr. Emad S. Hassan received his B.Sc. (Honors), M.Sc., and Ph.D. from Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt, in 2003, 2006, and 2010, respectively. In 2008, he joined the Communications Research Group at Liverpool University, Liverpool, UK, as a Visitor Researcher to finish his Ph.D research. Now, he is a Lecturer at Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt. Dr Hassan has been a full-time Demonstrator (2003-2006), Assistant Lecturer (2007-2010) at Faculty of Electronic Engineering, Menoufia University. He was a Visitor Researcher at Liverpool University, Liverpool, UK, (2008-2009), a Teaching Assistant at the University of Liverpool, UK (2008-2009), Lecturer (2010-date) at Faculty of Electronic Engineering, Menoufia University, and a part-time Lecturer at many respectable private engineering universities in Egypt (2010-2011). He co-supervises 6 M.Sc. and 1 PhD students, Faculty of Electronic Engineering, Menoufia University (2010-date). Dr Hassan is a reviewer for many international journals and conferences. He was a Technical Program Committee (TPC) member for many international conferences. He has published more than 60 scientific papers in national and international conference proceedings and journals and two books in CRC Press, Taylor & Francis. His current research areas of interest include image processing, digital communications, cooperative communication, cognitive radio networks, OFDM, SC-FDE, MIMO and CPM based systems.