Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sediment and Contaminant Transport in Surface Waters

(University of California, Santa Barbara, USA)
  • Formāts: 416 pages
  • Izdošanas datums: 18-Sep-2008
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781040204948
  • Formāts - EPUB+DRM
  • Cena: 219,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 416 pages
  • Izdošanas datums: 18-Sep-2008
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781040204948

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Contaminated bottom sediments and their negative impacts on water quality are a major problem in surface waters throughout the United States as well as in many other parts of the world. Even after elimination of the primary contaminant sources, these bottom sediments will be a main source of contaminants for many years to come. In order to determine environmentally-effective and cost-effective remedial actions, the transport and fate of these sediments and associated contaminants must be understood and quantified. This book details how to best approach contaminated sediments, allowing readers to better assess and address water quality and health issues, water body management, and potential remediation methods.

Understand and Address Major Environmental Threats to Our Water

Sediment and contaminant transport is an enormously rich and complex field that involves physical, chemical, and biological processes as well as the mathematical modeling of these processes. While many books have been written on these broad topics, Sediment and Contaminant Transport in Surface Waters takes a more focused approach, highlighting areas that have been investigated but not covered thoroughly elsewhere.

This volume emphasizes the erosion, deposition, flocculation, and transport of fine-grained, cohesive sediments; the effects of finite rates of sorption on the transport and fate of hydrophobic contaminants; and the effects of major events such as floods and storms. Despite these emphases, the overall goal of the text is to present a general description and understanding of the transport of sediments and contaminants in surface waters as well as procedures to quantitatively predict this transport.
Preface xiii
About the Author xv
Introduction
1(20)
Examples of Contaminated Sediment Sites
2(7)
Hudson River
2(2)
Lower Fox River
4(2)
Passaic River/Newark Bay
6(1)
Palos Verdes Shelf
7(2)
Modeling, Parameterization, and Non-Unique Solutions
9(3)
Modeling
9(1)
Parameterization and Non-Unique Solutions
10(2)
The Importance of Big Events
12(5)
Overview of Book
17(4)
General Properties of Sediments
21(24)
Particle Sizes
21(9)
Classification of Sizes
21(2)
Measurements of Particle Size
23(1)
Size Distributions
23(3)
Variations in Size of Natural Sediments throughout a System
26(4)
Settling Speeds
30(3)
Mineralogy
33(2)
Flocculation of Suspended Sediments
35(2)
Bulk Densities of Bottom Sediments
37(8)
Measurements of Bulk Density
39(2)
Variations in Bulk Density
41(4)
Sediment Erosion
45(58)
Devices for Measuring Sediment Resuspension/Erosion
46(10)
Annular Flumes
46(4)
The Shaker
50(1)
Sedflume
51(3)
A Comparison of Devices
54(2)
Results of Field Measurements
56(11)
Detroit River
57(3)
Kalamazoo River
60(7)
Effects of Bulk Properties on Erosion Rates
67(14)
Bulk Density
68(2)
Particle Size
70(2)
Mineralogy
72(3)
Organic Content
75(1)
Salinity
76(1)
Gas
77(2)
Comparison of Erosion Rates
79(1)
Benthic Organisms and Bacteria
80(1)
Initiation of Motion and a Critical Shear Stress for Erosion
81(9)
Theoretical Analysis for Noncohesive Particles
83(2)
Effects of Cohesive Forces
85(2)
Effects of Bulk Density
87(1)
Effects of Clay Minerals
88(2)
Approximate Equations for Erosion Rates
90(3)
Cohesive Sediments
90(1)
Noncohesive Sediments
91(1)
A Uniformly Valid Equation
92(1)
Effects of Clay Minerals
92(1)
Effects of Surface Slope
93(10)
Noncohesive Sediments
93(3)
Critical Stresses for Cohesive Sediments
96(1)
Experimental Results for Cohesive Sediments
97(6)
Flocculation, Settling, Deposition, and Consolidation
103(72)
Basic Theory of Aggregation
104(4)
Collision Frequency
104(2)
Particle Interactions
106(2)
Results of Flocculation Experiments
108(12)
Flocculation due to Fluid Shear
109(7)
Flocculation due to Differential Settling
116(4)
Settling Speeds of Flocs
120(6)
Flocs Produced in a Couette Flocculator
120(2)
Flocs Produced in a Disk Flocculator
122(3)
An Approximate and Uniformly Valid Equation for the Settling Speed of a Floc
125(1)
Models of Flocculation
126(16)
General Formulation and Model
126(4)
A Simple Model
130(8)
A Very Simple Model
138(1)
An Alternate Derivation
139(1)
Fractal Theory
140(2)
Deposition
142(13)
Processes and Parameters That Affect Deposition
145(1)
Fluid Turbulence
145(3)
Particle Dynamics
148(1)
Particle Size Distribution
148(1)
Flocculation
148(1)
Bed Armoring/Consolidation
149(1)
Partial Coverage of Previously Deposited Sediments by Recently Deposited Sediments
149(1)
Experimental Results and Analyses
149(5)
Implications for Modeling Deposition
154(1)
Consolidation
155(16)
Experimental Results
156(9)
Basic Theory of Consolidation
165(4)
Consolidation Theory Including Gas
169(2)
Appendix A
171(1)
Appendix B
172(3)
Hydrodynamic Modeling
175(40)
General Considerations in the Modeling of Currents
176(14)
Basic Equations and Boundary Conditions
176(3)
Eddy Coefficients
179(3)
Bottom Shear Stress
182(1)
Effects of Currents
182(3)
Effects of Waves and Currents
185(2)
Wind Stress
187(1)
Sigma Coordinates
188(1)
Numerical Stability
189(1)
Two-Dimensional, Vertically Integrated, Time-Dependent Models
190(5)
Basic Equations and Approximations
190(1)
The Lower Fox River
191(3)
Wind-Driven Currents in Lake Erie
194(1)
Two-Dimensional, Horizontally Integrated, Time-Dependent Models
195(6)
Basic Equations and Approximations
196(2)
Time-Dependent Thermal Stratification in Lake Erie
198(3)
Three-Dimensional, Time-Dependent Models
201(9)
Lower Duwamish Waterway
202(2)
Numerical Error due to Use of Sigma Coordinates
204(1)
Model of Currents and Salinities
205(1)
Flow around Partially Submerged Cylindrical Bridge Piers
206(4)
Wave Action
210(5)
Wave Generation
210(1)
Lake Erie
211(1)
A Southwest Wind
212(1)
A North Wind
213(1)
Relation of Wave Action to Sediment Texture
213(2)
Modeling Sediment Transport
215(64)
Overview of Models
215(5)
Dimensions
215(1)
Quantities That Significantly Affect Sediment Transport
216(1)
Erosion Rates
216(1)
Particle/Floc Size Distributions
217(1)
Settling Speeds
218(1)
Deposition Rates
219(1)
Flocculation of Particles
219(1)
Consolidation
219(1)
Erosion into Suspended Load and/or Bedload
220(1)
Bed Armoring
220(1)
Transport as Suspended Load and Bedload
220(6)
Suspended Load
220(1)
Bedload
221(2)
Erosion into Suspended Load and/or Bedload
223(3)
Bed Armoring
226(1)
Simple Applications
226(13)
Transport and Coarsening in a Straight Channel
227(2)
Transport in an Expansion Region
229(6)
Transport in a Curved Channel
235(2)
The Vertical Transport and Distribution of Flocs
237(2)
Rivers
239(22)
Sediment Transport in the Lower Fox River
239(1)
Model Parameters
240(2)
A Time-Varying Flow
242(4)
Upstream Boundary Condition for Sediment Concentration
246(3)
Use of Sedflume Data in Modeling Erosion Rates
249(2)
Effects of Grid Size
251(1)
Sediment Transport in the Saginaw River
252(3)
Sediment Transport during Spring Runoff
255(2)
Long-Term Sediment Transport Predictions
257(4)
Lakes and Bays
261(10)
Modeling Big Events in Lake Erie
261(1)
Transport due to Uniform Winds
261(2)
The 1940 Armistice Day Storm
263(1)
Geochronology
264(2)
Comparison of Sediment Transport Models for Green Bay
266(5)
Formation of a Turbidity Maximum in an Estuary
271(8)
Numerical Model and Transport Parameters
272(1)
Numerical Calculations
273(1)
A Constant-Depth, Steady-State Flow
273(1)
A Variable-Depth, Steady-State Flow
274(3)
A Variable-Depth, Time-Dependent Tidal Flow
277(2)
The Sorption and Partitioning of Hydrophobic Organic Chemicals
279(34)
Experimental Results and Analyses
280(17)
Basic Experiments
280(5)
Parameters That Affect Steady-State Sorption and Partitioning
285(1)
Colloids from the Sediments
285(4)
Colloids from the Water
289(2)
Organic Content of Sediments
291(1)
Sorption to Benthic Organisms and Bacteria
292(1)
Nonlinear Isotherms
292(5)
Modeling the Dynamics of Sorption
297(16)
A Diffusion Model
298(2)
A Simple and Computationally Efficient Model
300(3)
Calculations with the General Model and Comparisons with Experimental Results
303(2)
Desorption
305(3)
Adsorption
308(2)
Short-Term Adsorption Followed by Desorption
310(1)
Effects of Chemical Properties on Adsorption
311(2)
Modeling the Transport and Fate of Hydrophobic Chemicals
313(60)
Effects of Erosion/Deposition and Transport
316(6)
The Saginaw River
316(3)
Green Bay, Effects of Finite Sorption Rates
319(3)
The Diffusion Approximation for the Sediment-Water Flux
322(5)
Simple, or Fickian, Diffusion
322(3)
Sorption Equilibrium
325(1)
A Mass Transfer Approximation
326(1)
The Sediment-Water Flux due to Molecular Diffusion
327(15)
Hexachlorobenzene (HCB)
328(1)
Experiments
328(1)
Theoretical Models
329(1)
Diffusion of Tritiated Water
330(1)
HCB Diffusion and Sorption
331(3)
Additional HOCs
334(1)
Experimental Results
334(2)
Theoretical Model
336(1)
Numerical Calculations
337(1)
Long-Term Sediment-Water Fluxes
338(1)
Related Problems
338(1)
Flux from Contaminated Bottom Sediments to Clean Overlying Water
338(3)
Flux Due to a Contaminant Spill
341(1)
The Sediment-Water Flux Due to Bioturbation
342(13)
Physical Mixing of Sediments by Organisms
343(1)
The Flux of an HOC Due to Organisms
344(1)
Experimental Procedures
345(1)
Theoretical Model
346(2)
Experimental and Modeling Results
348(5)
Modeling Bioturbation as a Diffusion with Finite-Rate Sorption Process
353(2)
The Sediment-Water Flux Due to ``Diffusion''
355(5)
The Flux and the Formation of Sediment Layers Due to Erosion/Deposition
355(1)
Comparison of ``Diffusive'' Fluxes and Decay Times
356(1)
Observations of Well-Mixed Layers
357(2)
The Determination of an Effective h
359(1)
Environmental Dredging: A Study of Contaminant Release and Transport
360(6)
Transport of Dredged Particles
361(1)
Transport and Desorption of Chemical Initially Sorbed to Dredged Particles
362(1)
Diffusive Release of Contaminant from the Residual Layers
363(2)
Volatilization
365(1)
Water Quality Modeling, Parameterization, and Non-Unique Solutions
366(7)
Process Models
367(1)
Sediment Erosion
367(1)
Sediment Deposition
367(1)
Bed Armoring
368(1)
The Sediment-Water Flux of HOCs Due to ``Diffusion''
368(1)
Equilibrium Partitioning
368(1)
Numerical Grid
369(1)
Parameterization and Non-Unique Solutions
369(1)
Implications for Water Quality Modeling
370(3)
References 373(16)
Index 389
University of California, Santa Barbara