Atjaunināt sīkdatņu piekrišanu

E-grāmata: Self-Healing Smart Materials

Edited by , Edited by , Edited by (National Center for Nanoscience and Technology (NCNST, Beijing)), Edited by (Aligarh Muslim University, Aligarh, India)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119710240
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 223,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119710240
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This comprehensive book describes the design, synthesis, mechanisms, characterization, fundamental properties, functions and development of self-healing smart materials and their composites with their allied applications. It covers cementitious concrete composites, bleeding composites, elastomers, tires, membranes, and composites in energy storage, coatings, shape-memory, aerospace and robotic applications. The 21 chapters are written by researchers from a variety of disciplines and backgrounds.

Preface xv
1 Self-Healing Polymer Coatings
1(38)
Facundo I. Altuna
Cristina E. Hoppe
1.1 Introduction
2(3)
1.2 Extrinsic Self-Healing Polymer Coatings
5(8)
1.3 Intrinsic Self-Healing Polymer Coatings
13(8)
1.4 Remote Activation of Self-Healing
21(5)
1.5 Perspectives and Challenges
26(13)
References
27(12)
2 Smart Phenolics for Self-Healing and Shape Memory Applications
39(26)
Baris Kiskan
Yusuf Yagci
2.1 Introduction
40(2)
2.2 Self-Healable Polybenzoxazines
42(9)
2.3 Benzoxazine Resins for Shape Memory Applications
51(6)
2.4 Conclusion
57(8)
References
58(7)
3 Self-Healable Elastomers
65(34)
Mariajose Cova Sanchez
Daniela Belen Garcia
Mariano Martin Escobar
Marcela Mansilla
3.1 Introduction
65(2)
3.2 Self-Healing in Elastomers
67(4)
3.2.1 Self-Healing Mechanism
68(1)
3.2.1.1 Heat Stimulated Self-Healing
68(1)
3.2.1.2 Light Stimulated Self-Healing
68(1)
3.2.1.3 Mechanochemical Self-Healing
68(1)
3.2.1.4 Encapsulation
69(1)
3.2.2 Characterization of Healing Process
70(1)
3.3 Particular Cases in Different Elastomers
71(28)
3.3.1 Natural Rubber (NR)
71(5)
3.3.2 Styrene Butadiene Rubber (SBR)
76(3)
3.3.3 Polybutadiene Rubber
79(2)
3.3.4 Bromobutyl Rubber
81(3)
3.3.5 Silicones
84(5)
3.3.6 Polyurethanes
89(3)
References
92(7)
4 Self-Healable Tires
99(24)
Norazlianie Sazali
Mohamad Azuwa Mohamed
Zul Adlan Mohd Hir
4.1 Introduction
100(2)
4.2 Self-Healable Rubber
102(1)
4.3 Promising Strategy for Self-Healing Rubber-Based Material
103(10)
4.4 Conclusion
113(10)
References
113(10)
5 Self-Healing Bacterial Cementitious Composites
123(30)
R. Preetham
R. Hari Krishna
M.N. Chandraprabha
R. Sivaramakrishna
5.1 Introduction
124(6)
5.2 Biomineralization for Self-Healing
130(9)
5.2.1 Bacteria as Self-Healing Agent
130(1)
5.2.2 Bacterial Metabolic Pathway in Self-Healing
131(1)
5.2.2.1 Urea Hydrolysis by Ureolytic Bacteria
132(1)
5.2.2.2 Hydrolysis of CO2 by Carbonic Anhydrase Producing Bacteria
133(1)
5.2.2.3 Hydrolysis of Organic Acids
134(1)
5.2.2.4 Dissimilatory Nitrate Reduction
134(1)
5.2.2.5 Dissimilatory Sulfate Reduction
135(1)
5.2.2.6 Ammonification
135(4)
5.3 Strategies to Enhance the Performance of Bacterial Self-Healing
139(2)
5.4 Evaluation of Factors Affecting Bacterial Self-Healing
141(5)
5.4.1 Nutrient Suitability for Optimal Bacterial Growth
142(1)
5.4.2 Viability and Activity of Encapsulated Spores
143(1)
5.4.3 Evaluation of Encapsulation Material
143(1)
5.4.4 Crack Healing Efficiency
144(2)
5.4.5 Effects of Capsule Material and Bacteria on Concrete Properties
146(1)
5.5 Conclusion, Future Prospective & Challenges
146(7)
References
147(6)
6 Self-Healable Solar Cells: Recent Insights and Challenges
153(28)
Seyyed Alireza Hashemi
Seyyed Mojtaba Mousavi
Sonia Bahrani
Seeram Ramakrishna
Chin Wei Lai
Wei-Hung Chiang
6.1 Introduction
154(1)
6.2 Functional Mechanism of Protection Approaches
155(4)
6.2.1 Self-Healable Polymeric Structure
155(1)
6.2.2 Shape Memory Polymeric Structure
156(1)
6.2.3 Self-Cleanable Polymeric Platforms
157(2)
6.3 Advanced Self-Healable Polymeric Materials
159(9)
6.3.1 Self-Healable Polymers
159(6)
6.3.2 Self-Healable Hydrogels
165(3)
6.4 Shape Memory Materials
168(1)
6.5 Self-Healable Solar Cells
169(6)
6.6 Conclusions
175(6)
References
175(6)
7 Self-Healable Core-Shell Nanofibers
181(22)
Sonia Bahrani
Seyyed Mojtaba Mousavi
Seyyed Alireza Hashemi
Chin Wei Lai
Wei-Hung Chiang
7.1 Introduction
182(1)
7.2 Self-Healing Polymers in Fabrication of Core-Shell Nanofibers
183(1)
7.3 Strategies for Core-Shell Nanofibers Fabrication
184(4)
7.3.1 Capsule-Based Self-Healing
185(2)
7.3.2 Vascular-Based Self-Healing
187(1)
7.4 Methods of Fabrication of Self-Healing Core-Shell Nanofibers
188(6)
7.4.1 Co-Electrospinning
188(2)
7.4.2 Emulsion Electrospinning
190(4)
7.4.3 Solution-Blown
194(1)
7.5 Self-Healing in Laminated Composite
194(2)
7.6 Beneficial Self-Repairing Systems on Basis of Core-Shell Nanofibers
196(1)
7.7 Conclusion
197(6)
References
197(6)
8 Intrinsic Self-Healing Materials
203(34)
Angelita Cristiane Saul
Joao Henrique Zimnoch dos Santos
8.1 Introduction
203(2)
8.2 Inverse Reactions and Chain Recombination
205(1)
8.3 Reversible (Covalent) Bonds
205(18)
8.3.1 Cycloadditions
206(5)
8.3.2 Reversible Acylhydrazones
211(5)
8.3.3 Disulfides
216(2)
8.3.4 Alkoxyamines (Radicals)
218(4)
8.3.5 Transesterification
222(1)
8.4 Supramolecular Interactions
223(6)
8.4.1 Hydrogen Bonds
224(1)
8.4.2 π--π Interaction
225(1)
8.4.3 Ionomers (Ballistic Stimulus)
226(1)
8.4.4 Metallopolymers
227(2)
8.5 Conclusion
229(8)
References
229(8)
9 Self-Healable Catalysis
237(10)
Bilge Coskuner Filiz
9.1 Introduction
237(2)
9.2 Self-Healable Catalysis Applications
239(5)
9.2.1 Oxygen Evolution Catalysts
239(4)
9.2.2 Specific Catalysis Applications of Self-Healing Property
243(1)
9.3 Conclusion
244(3)
References
244(3)
10 Self-Healing Materials in Corrosion Protection
247(50)
Eiman Alibakhshi
Bahram Ramezanzadeh
Mohammad Mahdavian
10.1 Introduction
248(1)
10.2 Self-Healing Definition
249(2)
10.3 Inhibition of the Corroded Regions Thanks to the Presence of Corrosion Inhibitive Pigments/Inhibitors
251(5)
10.4 The Imprisonment and Physical Release of the Inhibitor
256(19)
10.4.1 Ion-Exchange Based Materials
257(11)
10.4.2 Porous-Structure and Metal Oxide Materials
268(1)
10.4.3 Conductive Polymers
269(1)
10.4.4 Fibril Materials
270(1)
10.4.5 Lamellar-Structure Materials
271(3)
10.4.6 Other Containers
274(1)
10.5 Healing Using Polymerizable Agents
275(1)
10.6 Conclusion and Outlook
276(21)
References
278(19)
11 Self-Healable Conductive Materials
297(24)
Af. Ramesh
L. Rajeshkumar
D. Balaji
V. Bhuvaneswari
S. Sivalingam
11.1 Introduction
298(1)
11.2 Self-Healing Materials
298(6)
11.2.1 Elastomers
298(5)
11.2.2 Reversible Materials
303(1)
11.3 Self-Healing Conductive Materials
304(9)
11.3.1 Polymers
304(2)
11.3.2 Capsules
306(2)
11.3.3 Liquids
308(1)
11.3.4 Composites
309(2)
11.3.5 Coating
311(2)
11.4 Conclusion
313(8)
References
313(8)
12 Self-Healable Artificial Skin
321(24)
Younus Raza Beg
Gokul Ram Nishad
Priyanka Singh
12.1 Introduction
321(1)
12.2 Preparation and Properties of Artificial Skin
322(13)
12.3 Applications of Electronic Skin
335(6)
12.4 Conclusion
341(4)
References
342(3)
13 Self-Healing Smart Composites
345(16)
Sithara Gopinath
Suresh Mathew
P. Radhakrishnan Nair
13.1 Introduction
345(1)
13.2 Self-Healing Mechanisms and its Classifications
346(6)
13.2.1 Intrinsic Self-Repairing Materials
348(2)
13.2.2 Extrinsic Self-Repairing Materials
350(2)
13.3 Self-Healing of Thermoplastic Materials
352(2)
13.4 Self-Healing of Thermosetting Materials
354(1)
13.5 Conclusions and Future Study
355(6)
References
356(5)
14 Stimuli-Responsive Self-Healable Materials
361(18)
G. Jerald Maria Antony
S. Raja
S.T. Aruna
14.1 Self-Healing Materials
362(2)
14.2 Synthesis of S-H Materials
364(1)
14.3 Types of S-H Materials
365(2)
14.4 Need for Stimuli-Responsive Shape Memory (S-RSM) Materials
367(1)
14.5 Stimuli-Responsive or Nonautonomous S-H Materials
368(6)
14.5.1 Light Stimuli-Responsive S-H Materials
369(1)
14.5.2 Thermal Stimuli-Responsive S-H Materials
370(1)
14.5.3 Chemical Stimuli-Responsive S-H Materials
371(1)
14.5.4 Electric/Magnetic Stimuli-Responsive S-H Materials
372(1)
14.5.5 Multi-Stimuli Responsive S-H Material
373(1)
14.6 Commercialization and Challenges
374(1)
14.7 Conclusions
375(4)
References
375(4)
15 Mechanically-Induced Self-Healable Materials
379(26)
M. Ramesh
L. Rajeshkumar
R. Saravanakumar
15.1 Introduction
380(1)
15.2 Mechanically-Induced Self-Healing Based on Gel
380(6)
15.3 Mechanically-Induced Self-Healing Based on Crystals
386(3)
15.4 Mechanically-Induced Self-Healing Based on Composites
389(5)
15.5 Mechanically-Induced Self-Healing for Corrosion
394(5)
15.5.1 Capsule-Based Self-Healing Approaches for Corrosion Protection
394(4)
15.5.2 Fiber-Based Self-Healing Approaches for Corrosion Protection
398(1)
15.6 Conclusion
399(6)
References
400(5)
16 Self-Healing Materials in Robotics
405(10)
Sunny Kumar
16.1 Introduction
405(1)
16.2 Chemistry of Self-Healing (S-H) Materials
406(1)
16.3 Working of Self-Healing (S-H) Material
407(1)
16.4 Application of Self-Healing Robots
407(1)
16.4.1 Self-Healing Electronics for Soft Robotics
407(1)
16.4.2 Self-Healing Electrostatic Actuators
408(1)
16.4.3 Self-Healing Skin for Robotics
408(1)
16.5 Approaches to Self-Healing
408(2)
16.6 Material Application and Damage Resilience Mechanism
410(1)
16.7 Conclusion
410(5)
References
412(3)
17 Self-Healing Materials in Aerospace Applications
415(20)
M. Harikrishna Kumar
C. Moganapriya
A. Moha Kumar
R. Rajasekar
V. K. Gobinath
17.1 Introduction
415(2)
17.2 Classification of Self-Healing Materials
417(3)
17.2.1 Intrinsic Mechanism
417(1)
17.2.2 Extrinsic Mechanism
418(1)
17.2.2.1 Microencapsulation
418(1)
17.2.2.2 Microvascular Network
419(1)
17.3 Self-Healing Materials in Aerospace Applications
420(11)
17.3.1 Fiber Reinforced Polymers
421(4)
17.3.2 Modified Epoxy
425(3)
17.3.3 Ceramic Matrix Composites
428(3)
17.4 Conclusion
431(4)
References
432(3)
18 Bio-Inspired Self-Healable Materials
435(40)
Archita Sharma
Shailendra Kumar Arya
18.1 Introduction
436(12)
18.1.1 Self-Healable Materials and Coatings
439(1)
18.1.1.1 The Process of Self-Healing Through the Exploitation of Micro-Capsule and Micro-Vascular Method
439(3)
18.1.1.2 Self-Healing Process Through Reversible Covalent Bond Formation
442(2)
18.1.1.3 Self-Healable Systems on the Basis of Supramolecular Self-Assembly
444(1)
18.1.2 Mechanism of Self-Healing Materials
445(3)
18.2 Repairing and Healing the Damage
448(1)
18.3 A Systematic Biomimetic Approach
448(1)
18.4 Self-Healable Materials: Case Studies
449(4)
18.4.1 Regrowth of Limbs
449(2)
18.4.2 The Mechanism of Bone Healing
451(1)
18.4.3 Cutaneous Wound Healing
452(1)
18.5 Applications of Bio-Inspired Self-Healable Materials---Examples
453(11)
18.5.1 Bio-Inspired Ionic Skin for Pressure Sensing
453(3)
18.5.2 Self-Healable Synthetic Vascular Materials Concerning Internal Damage
456(2)
18.5.3 Biobased Self-Healable Color Hydrogel
458(3)
18.5.4 Bio-Inspired Support for Repairing Damaged Articular Cartilage
461(3)
18.6 Conclusions and Outlook
464(11)
References
465(10)
19 Self-Healable Batteries
475(20)
Seyyed Mojtaba Mousavi
Maryam Zarei
Seyyed Alireza Hashemi
Wei-Hung Chiang
Chin Wei Lai
Sonia Bahrani
19.1 Introduction
476(2)
19.2 Development of Self-Healing Materials
478(3)
19.3 Self-Healing Batteries
481(6)
19.3.1 Self-Healable Electrodes
481(2)
19.3.2 Self-Healable Electrolytes
483(4)
19.4 Conclusions
487(8)
References
488(7)
20 Self-Healing in Bleeding Composites
495(16)
Lutfur Rahman
Ata Ullah
Muhammad Bilal Yazdani
Muhammad Irfan
Waheed S. Khan
Asma Rehman
20.1 Introduction
496(2)
20.2 Intrinsic and Extrinsic Self-Healing Materials and Their Repairing Approaches
498(1)
20.3 Strategies of Self-Healing in Engineered Materials
499(4)
20.3.1 Materials With Bioinspired Self-Healing Mechanism
499(3)
20.3.2 Self-Healing in Composite Materials Based on Biomimetic Approaches
502(1)
20.3.3 Vascular Networks
502(1)
20.4 Healing Agents, Comparison With Biological Phenomenon and Bleeding Mechanism in Self-Healing Composite Materials
503(4)
20.4.1 Compartmentalization, Recovery After Yield and Reinforce Repair
506(1)
20.5 Advantages and Disadvantages of Self-Repairing Bleeding Composite Materials
507(1)
20.6 Conclusion
508(3)
References
508(3)
21 Self-Healing Polymers
511(14)
Muhammad Akram
Charles Oluwaseun Adetunji
Mohd Imran Ahamed
Adrish Sohail
Iram Ghaffar
Olugbenga Samuel Michael
Hina Anwar
Musa Abidemi Muhibi
Juliana Bunmi Adetunji
Umme Laila
Mathew Olaniyan
21.1 Introduction
512(1)
21.2 General Overview on Self-Healing Materials
513(2)
21.3 Design of Self-Healing
515(2)
21.3.1 Modes of Action of Self-Healing
515(1)
21.3.2 Rearrangement of Surface Dynamics
516(1)
21.3.3 Bringing the Surfaces Together
516(1)
21.3.4 Wetness
516(1)
21.3.5 Diffusion
516(1)
21.4 Application of Self-Healing Materials
517(5)
21.4.1 Properties of Self-Healing
518(1)
21.4.2 Advancement in Self-Healing
518(1)
21.4.3 Classification of Self-Healing
519(1)
21.4.4 Healing Mechanism Types of Healing
519(1)
21.4.4.1 Crack Filling Healing Process
519(2)
21.4.4.2 Diffusion
521(1)
21.4.4.3 Bond Reformation
521(1)
21.4.4.4 Application
521(1)
21.5 Specific Examples of Self-Healing Polymer
522(3)
21.5.1 Intrinsic Self-Healing
522(1)
21.5.2 Extrinsic Self-Healing
522(1)
21.5.3 One Capsule System
522(1)
21.5.4 Self-Healing Based on Ring Opening Metathesis Polymerization
522(1)
21.5.5 Solvent-Induced Self-Healing
523(1)
21.5.6 Dual-Capsule Systems
523(1)
21.5.6.1 Polydimethylsiloxane Condensation
524(1)
21.5.6.2 Platinum-Catalyzed Hydrosilylation
524(1)
21.5.6.3 Adaptive Resistant Effect
524(1)
21.6 Conclusion and Recommendations
525(1)
References 525(6)
Index 531
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.

Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.

Rajender Boddula PhD is currently working for the Chinese Academy of Sciences Presidents International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.

Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.