Atjaunināt sīkdatņu piekrišanu

E-grāmata: Semantics, Web and Mining: Joint International Workshop, EWMF 2005 and KDO 2005, Porto, Portugal, October 3-7, 2005, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 4289
  • Izdošanas datums: 28-Nov-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540476986
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 4289
  • Izdošanas datums: 28-Nov-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540476986

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Finding knowledge or meaning in data is the goal of every knowledge d- covery e ort. Subsequent goals and questions regarding this knowledge di er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e ort. Nowhere may they be more pertinent, however, than in KD from Web data (Web mining). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies.
EWMF Papers
A Website Mining Model Gentered on User Queries
1(17)
Ricardo Baeza-Yates
Barbara Poblete
WordNet-Based Word Sense Disambiguation for Learning User Profiles
18(16)
Marco Degemmis
Pasquale Lops
Giovanni Semeraro
Visibility Analysis on the Web Using Co-visibilities and Semantic Networks
34(17)
Peter Kiefer
Klaus Stein
Christoph Schlieder
Link-Local Features for Hypertext Classification
51(14)
Herve Utard
Johannes Furnkranz
Information Retrieval in Trust-Enhanced Document Networks
65(17)
Klaus Stein
Claudia Hess
Semi-automatic Creation and Maintenance of Web Resources with webTopic
82(21)
Nuno F. Escudeiro
Alipio M. Jorge
KDO Papers on KDD for Ontology
Discovering a Term Taxonomy from Term Similarities Using Principal Component Analysis
103(18)
Holger Bast
Georges Dupret
Debapriyo Majumdar
Benjamin Piwowarski
Semi-automatic Construction of Topic Ontologies
121(11)
Blaz Fortuna
Dunja Mladenic
Marko Grobelnik
Evaluation of Ontology Enhancement Tools
132(15)
Myra Spiliopoulou
Markus Schaal
Roland M. Muller
Marko Brunzel
KDO Papers on Ontology for KDD
Introducing Semantics in Web Personalization: The Role of Ontologies
147(16)
Magdalini Eirmaki
Dimitrios Mavroeidis
George Tsatsaronis
Michalis Vaziryiannis
Ontology-Enhanced Association Mining
163(17)
Vojtech Svatek
Jan Rauch
Martin Ralbovsky
Ontology-Based Rummaging Mechanisms for the Interpretation of Web Usage Patterns
180(17)
Mariangela Vanzin
Karin Becker
Author Index 197