Atjaunināt sīkdatņu piekrišanu

E-grāmata: Semiconductor Nanodevices: Physics, Technology and Applications

Edited by (Professor of Experimental Physics and Head of Semiconductor Physics, University of Cambridge, Cavendish Laboratory, Cambridge,UK)
  • Formāts: EPUB+DRM
  • Sērija : Frontiers of Nanoscience
  • Izdošanas datums: 24-Oct-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128220849
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 223,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Frontiers of Nanoscience
  • Izdošanas datums: 24-Oct-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128220849
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Semiconductor Nanodevices: Physics, Technology and Applications explores recent advances in the field. The behaviour of these devices is controlled by regions of nanoscale dimensions which typically determine the local density of electronic states and lead to the observation of a range of quantum effects with significant potential for exploitation.

The book opens with an introduction describing the development of this research field over the past few decades which contrasts quantum-controlled devices to conventional nanoscale electronic devices where an emphasis has often been placed on minimising quantum effects.

This introduction is followed by seven chapters describing electrical nanodevices and five chapters describing opto-electronic nanodevices; individual chapters review important recent advances.

These chapters include specific fabrication details for the structures and devices described as well as a discussion of the physics made accessible. It is an important reference source for physicists, materials scientists and engineers who want to learn more about how semiconductor-based nanodevices are being developed for both science and potential industrial applications.

The section on electrical devices includes chapters describing the study of electron correlation effects using transport in quantum point contacts and tunnelling between one-dimensional wires; the high-frequency pumping of single electrons; thermal effects in quantum dots; the use of silicon quantum dot devices for qubits and quantum computing; transport in topological insulator nanoribbons and a comprehensive discussion of noise in electrical nanodevices.

The optical device section describes the use of self-assembled III-V semiconductor nanostructures embedded in devices for a range of applications, including quantum dots for single and entangled photon sources, quantum dots and nanowires in lasers and quantum dots in solar cells.
Contributors ix
1 Introduction, background and contents
1(6)
David A. Ritchie
2 Advances in interaction effects in the quasi one-dimensional electron gas
7(24)
S. Kumar
M. Pepper
1 Introduction
7(2)
2 Experimental
9(1)
3 Quantum transport properties of 1D devices
9(22)
Acknowledgements
25(1)
References
25(6)
3 Semiconductor nanodevices as a probe of strong electron correlations
31(36)
Pedro Vianez
Oleksandr Tsyplyatyev
Christopher Ford
1 The failure of Fermi liquid theory
31(9)
2 Early results on Tomonaga-Luttinger liquid behaviour
40(12)
3 Beyond the linear Tomonaga-Luttinger liquid approximation
52(4)
4 Recent work on nonlinear effects
56(6)
5 Other work on ID interaction effects
62(2)
6 Conclusion
64(3)
References
64(3)
4 Thermoelectric properties of a quantum dot
67(34)
Gulzat Jaliel
1 Landauer-Buttiker formalism of thermoelectricity
67(2)
2 The quantum dot model
69(2)
3 Quantum limit
71(1)
4 Coulomb oscillations and thermopower
72(5)
5 The effect of degeneracy
77(1)
6 Power factor and figure of merit
78(3)
7 Violation of the Wiedemann-Franz law
81(2)
8 Nonlinear regime
83(3)
9 Output power and efficiency
86(4)
10 Applications
90(3)
11 Summary
93(8)
References
95(6)
5 Single-electron sources
101(46)
Masaya Kataoka
1 Types of single-electron source
102(18)
2 Quantum current standard
120(9)
3 Electron quantum optics
129(11)
4 Summary
140(7)
Acknowledgements
141(1)
References
142(5)
6 Noise measurements in semiconductor nanodevices
147(94)
Glattli D. Christian
1 Introduction
147(2)
2 The physics of quantum shot noise
149(16)
3 Noise measurement techniques
165(8)
4 Shot noise in semiconductor nanodevices
173(57)
5 Conclusion
230(11)
References
231(10)
7 Electrical and superconducting transport in topological insulator nanoribbons
241(24)
Morteza Kayyalha
Leonid P. Rokhinson
Yong P. Chen
1 Introduction
241(2)
2 Overview of electrical transport in Tl
243(4)
3 Electrical transport in Tl nanoribbons
247(6)
4 Superconducting transport in Tl nanoribbons
253(7)
5 Summary and outlook
260(5)
References
260(5)
8 Silicon qubit devices
265(30)
Simon Schaal
M. Fernando Gonzalez-Zalba
1 Introduction
265(4)
2 Fabrication
269(6)
3 Silicon spin qubits
275(11)
4 Future developments
286(9)
Acknowledgements
287(1)
References
287(8)
9 Electrical control of semiconductor quantum dot single photon sources
295(24)
A.J. Bennett
1 Introduction and motivation
295(1)
2 Diode designs for single quantum dot photon sources
295(7)
3 Control of internal energy levels in quantum dots
302(5)
4 Hybrid approaches to control of quantum dots
307(5)
5 Future directions
312(7)
References
313(6)
10 Semiconductor quantum dot solar cells
319(34)
Yoshitaka Okada
Katsuhisa Yoshida
Yasushi Shoji
Ryo Tamaki
1 Introduction
319(3)
2 Drift-diffusion analysis of quantum efficiency in QD-IBSCs
322(9)
3 Improvement of carrier collection efficiency in QDSCs using field-damping layers
331(10)
4 FTIR spectroscopy of TSPA processes in QDSCs
341(7)
5 Conclusion
348(5)
Acknowledgements
349(1)
References
349(4)
11 Monolithic III--V quantum dot lasers on silicon
353(36)
Jae-Seong Park
Mingchu Tang
Siming Chen
Huiyun Liu
1 Introduction
353(2)
2 Advantages of quantum dot lasers on silicon
355(3)
3 Heteroepitaxial growth of lll-V on silicon
358(6)
4 Current status of lll-V quantum dot lasers on silicon
364(13)
5 Future directions of quantum dot lasers on SJ
377(1)
6 Conclusion
378(11)
Acknowledgement
380(1)
References
380(9)
12 Physics and applications of semiconductor nanowire lasers
389(50)
Patrick Parkinson
1 Introduction
389(3)
2 Lasers
392(12)
3 Nanowires as laser elements
404(12)
4 Contemporary topics in nanowire laser technology
416(4)
5 State of the art and outlook
420(19)
Acknowledgements
420(1)
References
421(18)
13 Nitride single photon sources
439(34)
Mark J. Holmes
Rachel A. Oliver
1 Introduction
439(4)
2 Basic principles of quantum dot fabrication
443(12)
3 Basic properties of quantum dots for single photon emission
455(5)
4 Strengths and weaknesses of nitride quantum dot single photon sources
460(4)
5 Single photon sources based on defects in nitrides
464(2)
6 Outlook
466(7)
References
466(7)
Index 473
David Ritchie is Professor of Experimental Physics and Head of the Semiconductor Physics group. He is also a Fellow and Director of Studies in Physics at Robinson College, Cambridge. His research focuses on semiconductor physics and has extensive experience of the growth, fabrication and measurement of low dimensional electronic and optical structures.