Atjaunināt sīkdatņu piekrišanu

E-grāmata: Semiconductor Radiation Detectors

  • Formāts: 518 pages
  • Sērija : Series in Sensors
  • Izdošanas datums: 31-May-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351629171
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 518 pages
  • Sērija : Series in Sensors
  • Izdošanas datums: 31-May-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351629171

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Choice Recommended Title, July 2020

Bringing together material scattered across many disciplines, Semiconductor Radiation Detectors provides readers with a consolidated source of information on the properties of a wide range of semiconductors; their growth, characterization and the fabrication of radiation sensors with emphasis on the X- and gamma-ray regimes. It explores the promise and limitations of both the traditional and new generation of semiconductors and discusses where the future in semiconductor development and radiation detection may lie.

The purpose of this book is two-fold; firstly to serve as a text book for those new to the field of semiconductors and radiation detection and measurement, and secondly as a reference book for established researchers working in related disciplines within physics and engineering.

Features:





The only comprehensive book covering this topic Fully up-to-date with new developments in the field Provides a wide-ranging source of further reference material

Recenzijas

"In this work, Owens (Institute of Experimental and Applied Physics, Czech Republic) offers an up-to-date, encyclopedic assessment of modern radiation detection. Following a succinct historical retelling of the discovery of radiation and radiation detectors in chapter 1, chapters 2 and 3 present an exhaustive review of solid state physics at the upper-division undergraduate level, similar to material encountered in a one-semester course using C. Kittels Introduction to Solid State Physics (8th ed., 2005). However, Owens prefers to use the relevant quantum mechanical results (e.g., Bloch functions) rather than their derivations.

The core of this volume discusses in detail the materials, fabrication, and characterization of semiconductor devices, including growth techniques and contact characteristics (electrode deposition), going far beyond the typical silicon and gallium arsenide examples. The final chapter explores the future of detector materials including nanoscintillators and biological detectors, as well as radiation detection using spintronics.

The addition of extensive references after each chapter and a useful set of appendixes (including calibration sources and a handy table of radionuclides) assures that this volume is well suited for senior engineering and physics students and researchers alike.

Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.

J. F. Burkhart, emeritus, University of Colorado at Colorado Springs"

List of Acronyms xvii
Preface xxi
About the Author xxiii
1 Introduction to Radiation and Its Detection: An Historical Perspective 1(18)
1.1 The Discovery of Radiation
1(3)
1.1.1 Understanding the Atom and Its Structure
3(1)
1.2 Radiation Detection
4(2)
1.2.1 Early Monitoring Devices
4(1)
1.2.2 Early Recording Devices
4(1)
1.2.3 Electro-Optical Approaches
5(1)
1.3 Early Work with Semiconductors
6(5)
1.3.1 Photoconduction Detectors
7(1)
1.3.2 Do Semiconductors Exist?
7(1)
1.3.3 Theoretical Stagnation and Salvation
7(2)
1.3.4 Crystal Counters
9(2)
1.4 Post-1960 Evolution
11(2)
1.4.1 The Current Situation
11(2)
1.4.1.1 Other Technologies
13(1)
1.5 Future Directions
13(1)
1.5.1 Exploring the Nano-Scale Properties of Materials
13(1)
1.5.2 Exploiting New Degrees of Freedom
14(1)
1.5.3 Biological Based Detection Systems
14(1)
References
14(5)
2 Semiconductors 19(32)
2.1 Metals, Semiconductors and Insulators
20(1)
2.2 Energy Band Formation
20(2)
2.3 General Properties of the Bandgap
22(6)
2.3.1 Hole Concept
23(1)
2.3.2 Carrier Generation and Recombination
23(1)
2.3.2.1 Excitons
24(1)
2.3.3 Pressure Dependence of the Bandgap
24(1)
2.3.4 Temperature Dependence of the Bandgap
25(1)
2.3.5 Bandgap Morphology
25(3)
2.3.5.1 Electrons in Solids
26(1)
2.3.5.2 Electrons in the Conduction Band
27(1)
2.3.5.3 Band Sub-Structure
28(1)
2.4 Effective Mass
28(4)
2.4.1 Polarons
30(2)
2.5 Carrier Mobility
32(4)
2.5.1 Lattice Scattering
33(2)
2.5.1.1 Acoustic Modes and Acoustic Phonon Scattering
34(1)
2.5.1.2 Optical Modes and Optical Phonon Scattering
35(1)
2.5.2 Impurity Scattering
35(1)
2.6 Carrier Velocity
36(1)
2.7 High Field Phenomena
37(3)
2.7.1 Saturated Carrier Velocities
37(1)
2.7.2 Hot Electrons
37(2)
2.7.3 Avalanche Breakdown
39(1)
2.8 Conduction in Semiconductors
40(9)
2.8.1 Intrinsic Semiconductors
40(4)
2.8.1.1 Intrinsic Carrier Concentration
40(4)
2.8.2 Extrinsic Semiconductors
44(4)
2.8.2.1 Donors and Acceptors
46(1)
2.8.2.2 Extrinsic Carrier Concentration
47(1)
2.8.2.3 Doping Dependence of the Energy Bandgap
47(1)
2.8.2.4 Practical Considerations
48(1)
2.8.3 Conductivity and Resistivity
48(1)
References
49(2)
3 Crystal Structure 51(26)
3.1 Introduction
52(1)
3.2 Crystal Lattices
53(4)
3.2.1 The Unit Cell
53(1)
3.2.2 Relationship between Lattices, Unit Cells and Atomic Arrangement
53(1)
3.2.3 Crystal Systems and the Bravais Lattice
54(1)
3.2.4 The Pearson Notation
54(1)
3.2.5 Space Groups
55(1)
3.2.6 Miller Indices
56(1)
3.3 Underlying Crystal Structure of Compound Semiconductors
57(6)
3.3.1 Lattice Constant and Bandgap Energy of Alloy Semiconductors
59(1)
3.3.2 Bonding
60(1)
3.3.3 Common Semiconductor Structures
60(1)
3.3.4 Polycrystalline and Amorphous Structures
61(2)
3.4 Crystal Formation
63(1)
3.5 Crystal Defects
63(9)
3.5.1 Defect Classification and Morphology
64(1)
3.5.2 Point Defects
65(1)
3.5.3 Line Defects (Dislocations)
66(2)
3.5.3.1 Edge Dislocations
67(1)
3.5.3.2 Screw Dislocations
68(1)
3.5.4 Plane Defects
68(3)
3.5.4.1 Twinning
69(1)
3.5.4.2 Grain Boundaries
69(2)
3.5.5 Volume or Bulk Defects
71(1)
3.6 Defect Engineering
72(1)
3.6.1 Point Defect Engineering
72(1)
3.6.2 Line Defect Engineering
72(1)
3.6.3 Plane Defect Engineering
73(1)
References
73(4)
4 Growth Techniques 77(36)
4.1 Introduction
78(1)
4.2 Base Material Production
79(3)
4.2.1 Material Purification
79(3)
4.2.1.1 Recrystallization
80(1)
4.2.1.2 Vacuum Distillation/Sublimation
80(1)
4.2.1.3 Zone Refining
80(2)
4.3 Crystal Growth
82(2)
4.3.1 Phases and Solidification
82(2)
4.4 Bulk Growth Techniques
84(10)
4.4.1 Hydrothermal Synthesis
84(1)
4.4.2 Czochralski (CZ)
85(3)
4.4.2.1 Liquid Encapsulated Czochralski (LEC)
86(1)
4.4.2.2 Limitations of the Czochralski Method
87(1)
4.4.2.3 Vapor Pressure Controlled Czochralski (VCZ)
87(1)
4.4.3 Bridgman-Stockbarger (B-S)
88(2)
4.4.3.1 High Pressure Bridgman (HPB)
88(1)
4.4.3.2 Vertical Gradient Freeze (VGF)
89(1)
4.4.4 Travelling Molten Zone ((TMZ) or Heater Method (THM)
90(1)
4.4.5 Float-Zone Growth Technique (FZ)
91(1)
4.4.6 Vapor Phase Growth (VPG)
91(2)
4.4.7 Discussion
93(1)
4.5 Epitaxy
94(4)
4.5.1 Substrates
94(1)
4.5.2 Strain and Electronic Properties
95(1)
4.5.3 Lattice Matching
95(1)
4.5.4 Van der Waals Epitaxy (VDWE)
96(1)
4.5.5 Bandgap Engineering
97(1)
4.5.6 Semiconductor Structures
98(1)
4.6 Film Growth Techniques
98(12)
4.6.1 Solid Phase Epitaxy (SPE)
98(1)
4.6.2 Liquid Phase Epitaxy (LPE)
99(2)
4.6.2.1 Tipping Furnace Method
99(1)
4.6.2.2 Vertical Dipping System
99(1)
4.6.2.3 Sliding Boat Method
100(1)
4.6.3 Vapor Phase Epitaxy (VPE)
101(5)
4.6.3.1 Chemical Vapor Deposition (CVD)
102(1)
4.6.3.2 Metal Organic Chemical Vapor Deposition (MOCVD)
103(2)
4.6.3.3 The Multi-Tube PVT (MTPVT) Technique
105(1)
4.6.4 Physical Vapor Deposition (PVD)
106(8)
4.6.4.1 Sputtering
107(1)
4.6.4.2 Evaporation
107(2)
4.6.4.3 Molecular-Beam Epitaxy (MBE)
109(1)
References
110(3)
5 Contacting Systems 113(26)
5.1 Introduction
114(1)
5.1.1 Low-Resistance or "Ohmic" Contacts
115(1)
5.1.2 Schottky or Blocking Contacts
115(1)
5.1.3 Contacting Technologies
115(1)
5.2 Metal Semiconductor Interfaces
115(1)
5.3 Schottky Barriers
116(8)
5.3.1 Image Force
118(1)
5.3.2 Image Force Reduction of the Schottky Barrier
119(1)
5.3.3 Barrier Width - Ideal Case
120(1)
5.3.3.1 Non-Ideal Case
121(1)
5.3.4 Junction Capacitance
121(2)
5.3.5 Real Barriers
123(1)
5.3.6 Metal-Induced Gap States (MIGS)
123(1)
5.3.7 Fermi Level Pinning
124(1)
5.4 Current Transport across a Schottky Barrier
124(5)
5.4.1 Thermionic Emission (TE)
125(1)
5.4.2 Thermally Assisted Field Emission (TFE)
126(1)
5.4.3 Field Emission (FE)
126(1)
5.4.4 Relative Contributions of TE, TFE and FE
127(1)
5.4.5 Estimated Contact Resistances for TE, FTE and FE Current Modes
127(1)
5.4.6 Other Current Components
128(1)
5.4.6.1 Current Due to Image Force Lowering of the Potential Barrier
128(1)
5.4.6.2 Generation-Recombination Effects
128(1)
5.4.6.3 Surface Leakage Current
129(1)
5.4.7 Practical Application of Schottky Barriers
129(1)
5.5 Ohmic Contacts
129(5)
5.5.1 Practical Ohmic Contacts
130(1)
5.5.2 Barrier Height Reduction
131(2)
5.5.2.1 Choice of Metal
131(1)
5.5.2.2 Doping Concentration
132(1)
5.5.2.3 Annealing
133(1)
5.5.2.4 Interface Doping
133(1)
5.5.3 Barrier Width Reduction
133(1)
5.5.4 Introducing Recombination Centers
133(1)
5.6 Desirable Properties of Ohmic Contacts
134(1)
5.6.1 Non-Ideal Effects in Metal-Semiconductor Junctions
135(1)
5.7 Contact-Less (Proximity Effect) Readout
135(1)
References
136(3)
6 Detector Fabrication 139(44)
6.1 Introduction
140(1)
6.2 Mechanical Processing Overview
141(6)
6.2.1 Thermal Annealing
141(1)
6.2.2 Cutting
141(1)
6.2.3 Lapping and Polishing
142(1)
6.2.4 Etching
143(1)
6.2.5 Cleaning
144(3)
6.2.5.1 Wet Cleaning
145(1)
6.2.5.2 Dry Cleaning
145(1)
6.2.5.3 Surface Conditioning
146(1)
6.3 Electrode Deposition Methods
147(3)
6.3.1 Metal Paints and Pastes
148(1)
6.3.2 Electrodeposition
148(1)
6.3.3 Physical Vapor Deposition (PVD)
149(2)
6.3.3.1 Sputtering
149(1)
6.3.3.2 Evaporation
149(1)
6.4 Lithography
150(1)
6.5 Detector Assembly
151(4)
6.5.1 Detector Packaging
152(3)
6.5.1.1 Leakage Current
153(1)
6.5.1.2 Bulk Leakage Currents
154(1)
6.5.1.3 Suppressing Surface Leakage Currents
154(1)
6.6 Processing Electronics
155(13)
6.6.1 Front End - Choice of Preamplifiers
155(4)
6.6.1.1 Limitations of Resistive Feedback Preamplifiers
158(1)
6.6.1.2 Pile-Up and Baseline Restoration
158(1)
6.6.2 Shaping Amplifiers
159(4)
6.6.2.1 Pulse Shaping
159(3)
6.6.2.2 Pole-Zero Cancellation (Tail Cancellation)
162(1)
6.6.2.3 Baseline Restoration
162(1)
6.6.2.4 Pile-Up Rejection
163(1)
6.6.3 Analog-to-Digital Conversion
163(3)
6.6.3.1 Flash ADCs
164(1)
6.6.3.2 Wilkinson ADC
165(1)
6.6.3.3 Successive Approximation ADC
166(1)
6.6.4 Digital Signal Processing
166(2)
6.7 Cooling
168(12)
6.7.1 Passive Cooling
169(1)
6.7.1.1 Radiators
169(1)
6.7.1.2 Cryogenic Cooling
169(1)
6.7.2 Mechanical Cooling
170(4)
6.7.2.1 Application to Detectors
172(1)
6.7.2.2 Reducing Microphonics
173(1)
6.7.3 Thermoelectric Cooling
174(6)
6.7.3.1 The Peltier Effect
174(1)
6.7.3.2 Quantifying the Effect
175(2)
6.7.3.3 Thermoelectric Cooler (TEC) Construction
177(1)
6.7.3.4 Performance
178(1)
6.7.3.5 Sizing a TEC for a Detector
179(1)
6.7.4 Summary and Comparison of Cooling Systems
180(1)
References
180(3)
7 Detector Characterization 183(44)
7.1 Introduction
184(1)
7.2 Chemical Analysis
184(2)
7.2.1 Compositional Analysis
184(1)
7.2.2 Trace Analysis
185(1)
7.2.2.1 Inductively Coupled Plasma Spectroscopy (ICP-MS and ICP-OES)
186(1)
7.2.2.2 Glow-Discharge Mass Spectrometry (GDMS)
186(1)
7.3 Crystallographic Characterization
186(3)
7.3.1 Single Crystal X-Ray Diffraction
186(2)
7.3.2 Powder Diffraction
188(1)
7.3.3 Rocking Curve (RC) Measurements
188(1)
7.3.4 XRD and Detector Performance
189(1)
7.4 Electrical Characterization
189(7)
7.4.1 Current-Voltage (I-V) Measurements
190(2)
7.4.2 Contact Characterization
192(1)
7.4.3 Measuring Contact Resistance
192(2)
7.4.4 Capacitance-Voltage (C-V) Measurements
194(2)
7.5 Electronic Characterization
196(4)
7.5.1 Determining the Majority Carrier
196(1)
7.5.2 Determining Effective Mass
196(1)
7.5.3 The Hall Effect
196(4)
7.5.3.1 Hall Effect Measurements
199(1)
7.5.3.2 Van Der Pauw Method
199(1)
7.6 Evaluating the Charge Transport Properties
200(7)
7.6.1 Probing the Electric Field
201(1)
7.6.2 Estimating the Mobilities
202(2)
7.6.3 Estimating the Mu-Tau (Kr) Products
204(2)
7.6.4 Limitations of the Hecht Equation
206(1)
7.6.5 Measuring the Charge Collection Efficiency
207(1)
7.7 Defect Characterization
207(3)
7.7.1 Thermally Stimulated Current (TSC) Spectroscopy
208(1)
7.7.2 Deep Level Transient Spectroscopy
208(1)
7.7.3 Photo-Induced Current Transient Spectroscopy (PICTS)
209(1)
7.8 Photon Metrology
210(13)
7.8.1 Synchrotron Radiation
210(1)
7.8.2 Light Sources
210(1)
7.8.3 Synchrotron Radiation Facilities
211(2)
7.8.4 Properties of the Beam
213(1)
7.8.5 Beamline Design
213(1)
7.8.6 Installing the Detector
214(1)
7.8.7 Harmonic Suppression
214(1)
7.8.8 Extending the Energy Range
215(1)
7.8.9 Detector Characterization
215(2)
7.8.10 Spatially Resolved Spectroscopy
217(1)
7.8.11 Probing Depth Dependences
217(1)
7.8.12 Pump and Probe Techniques
217(3)
7.8.13 Defect Metrology
220(1)
7.8.14 X-Ray Absorption Fine Structure (XAFS) Metrology
221(1)
7.8.15 Structural Studies
221(1)
7.8.16 Topographical and Surface Studies
222(1)
References
223(4)
8 Radiation Detection and Measurement 227(34)
8.1 Interaction of Radiation with Matter
228(1)
8.2 Charged Particles
228(3)
8.2.1 Energy Loss of Secondary Electrons - Collisional and Bremsstrahlung
230(1)
8.3 Neutron Detection
231(1)
8.4 X- and Gamma-Rays
232(12)
8.4.1 Photoelectric Effect
232(5)
8.4.1.1 The Ejection Process
233(1)
8.4.1.2 The De-Excitation Process
234(1)
8.4.1.3 Characteristic Lines and Selection Rules
235(2)
8.4.2 Coherent Scattering - Thomson and Rayleigh Scattering
237(1)
8.4.3 Incoherent Scattering - Compton Scattering
238(2)
8.4.4 Pair Production
240(2)
8.4.5 Attenuation and Absorption of Electromagnetic Radiation
242(2)
8.5 Radiation Detection Using Semiconductors
244(14)
8.5.1 Photodetectors
244(1)
8.5.2 Photoconductors
244(6)
8.5.2.1 Current Generation in Photoconductors
246(1)
8.5.2.2 Noise in Photoconductors
247(2)
8.5.2.3 Photoconductor Performance Metrics
249(1)
8.5.2.3.1 Responsivity
249(1)
8.5.2.3.2 Noise Equivalent Power (NEP)
250(1)
8.5.2.3.3 Detectivity
250(1)
8.5.3 The Solid-State Ionization Chamber
250(13)
8.5.3.1 Spectral Broadening in Radiation Detection Systems
252(24)
8.5.3.1.1 Fano Noise
253(1)
8.5.3.1.2 Electronic Noise
254(3)
8.5.3.1.3 Trapping Noise
257(1)
References
258(3)
9 Materials Used for General Radiation Detection 261(62)
9.1 Semiconductors and Radiation Detection
263(1)
9.2 Group IV and IV-IV Materials
263(7)
9.2.1 Silicon
263(2)
9.2.2 Germanium
265(1)
9.2.3 Carbon (Diamond)
266(2)
9.2.4 Silicon Carbide
268(2)
9.3 Group VI Materials
270(1)
9.3.1 Selenium
270(1)
9.4 Group III-V Materials and Alloys
270(8)
9.4.1 Gallium Antimonide
271(1)
9.4.2 Gallium Arsenide
271(1)
9.4.3 Gallium Phosphide
272(2)
9.4.4 Gallium Nitride
274(1)
9.4.5 Indium Phosphide
274(1)
9.4.6 Indium Iodide
275(1)
9.4.7 Narrow Gap Materials
276(1)
9.4.7.1 Indium Arsenide
276(1)
9.4.7.2 Indium Antimonide
276(1)
9.4.8 Aluminum Gallium Arsenide
277(1)
9.4.9 Aluminum Indium Phosphide
278(1)
9.4.10 Indium Gallium Phosphide
278(1)
9.5 Group II-VI Materials and Alloys
278(8)
9.5.1 Cadmium Telluride
279(1)
9.5.2 Cadmium Selenide
280(1)
9.5.3 Zinc Selenide
280(1)
9.5.4 Cadmium Zinc Telluride
281(1)
9.5.5 Cadmium Manganese Telluride
281(2)
9.5.6 Cadmium Magnesium Telluride
283(1)
9.5.7 Cadmium Zinc Selenide
284(1)
9.5.8 Cadmium Telluride Selenide
284(1)
9.5.9 Mercury Cadmium Telluride
285(1)
9.6 Group I-VII Materials
286(1)
9.6.1 Silver Chloride
286(1)
9.7 Group III-VI Materials
286(1)
9.7.1 Gallium Selenide
286(1)
9.7.2 Gallium Telluride
287(1)
9.8 Group n-VII Materials and Alloys
287(9)
9.8.1 Mercuric Iodide
287(1)
9.8.2 Mercuric Bromoiodide
288(1)
9.8.3 Mercuric Sulphide
289(1)
9.8.4 Mercuric Oxide
290(1)
9.8.5 Mercurous Halides
290(1)
9.8.6 Thallium Bromide
291(1)
9.8.7 Thallium Mixed Halides
292(1)
9.8.7.1 Thallium Bromoiodide
293(1)
9.8.7.2 Thallium Bromochloride
293(1)
9.8.8 Lead Iodide
293(1)
9.8.9 Antimony Tri-Iodide
294(1)
9.8.10 Bismuth Tri-Iodide
294(2)
9.8.11 Other Compounds
296(1)
9.9 Ternary Compounds
296(6)
9.9.1 Lithium Chalcogenides
296(1)
9.9.2 Cesium Thiomercurate
296(1)
9.9.3 Cesium-Based Perovskite Halides
297(1)
9.9.4 Copper Chalcogenides
297(1)
9.9.5 Mercury Chalcogenides
298(1)
9.9.6 Thallium Lead Iodide
298(1)
9.9.7 Thallium Chalcohalides
298(2)
9.9.7.1 Thallium Gallium Selenide
299(1)
9.9.7.2 Thallium Iodide Selenide
299(1)
9.9.8 Other Thallium Ternary Compounds
300(1)
9.9.9 Lead Chalcogenides
301(1)
9.9.9.1 Lead Gallium Selenide
301(1)
9.9.9.2 Lead Selenophosphate
301(1)
9.10 Quaternary Compounds
302(1)
9.11 Organic Semiconductors
302(6)
9.11.1 Structure
302(3)
9.11.2 Bonding
305(1)
9.11.3 Electronic Organic Materials
306(1)
9.11.4 Polyacetylene
307(1)
9.11.5 Poly(3,4-ethylenedioxythiothene) (PEDOT)
307(1)
9.11.6 Polyaniline (PANT)
307(1)
9.11.7 4-hydrocyanobenzene (4HCB)
308(1)
9.12 Hybrid Organic-Inorganic Semiconductors
308(3)
9.12.1 Hybrid Organic-Inorganic Perovskites
309(15)
9.12.1.1 Methylammonium Lead Halides
309(1)
9.12.1.2 Formamidinium Lead Halides
310(1)
9.13 Discussion
311(1)
References
312(11)
10 Current Materials Used for Neutron Detection 323(20)
10.1 Neutron Detection
323(1)
10.2 Indirect Neutron Detection
324(5)
10.2.1 Increasing Efficiency
326(1)
10.2.2 Shaped Converters
326(1)
10.2.3 Three-Dimensional Structures
326(3)
10.2.3.1 Perforated Structures
327(1)
10.2.3.2 Pillar Structures
327(1)
10.2.3.3 Trenched Structures
328(1)
10.3 Direct Neutron Detection
329(9)
10.3.1 Choice of Semiconductor
329(1)
10.3.2 Cadmium Based Devices
330(1)
10.3.3 Mercury Based Devices
330(1)
10.3.4 Lithium Based Devices
330(1)
10.3.5 Uranium Based Devices
331(1)
10.3.6 Boron Based Devices
332(13)
10.3.6.1 Boron Doping and Alloying
332(1)
10.3.6.2 Boron
333(2)
10.3.6.3 Boron Carbide
335(1)
10.3.6.4 Boron Phosphide
335(1)
10.3.6.5 Boron Nitride
335(2)
10.3.6.6 Boron Arsenide
337(1)
References
338(5)
11 Performance Limiting Factors 343(26)
11.1 Introduction
344(1)
11.2 Temperature Effects
345(3)
11.2.1 Intrinsic Components
345(2)
11.2.2 External Components
347(1)
11.2.3 Bulk Leakage Currents
347(1)
11.2.4 Surface Leakage Currents
348(1)
11.3 Polarization Effects
348(5)
11.3.1 Polarization Taxonomy
349(1)
11.3.2 Polarization in CdTe Detectors
349(2)
11.3.2.1 Bias-Induced Polarization
349(1)
11.3.2.2 Radiation-Induced Polarization
350(1)
11.3.2.3 Eliminating Polarization in CdTe
350(1)
11.3.3 Polarization in CdZnTe Detectors
351(1)
11.3.4 Polarization in HgI2 Detectors
351(1)
11.3.5 Polarization in TlBr Detectors
352(1)
11.4 Radiation Effects
353(12)
11.4.1 Ionization Damage and Its Effects
353(1)
11.4.2 Displacement Damage
354(3)
11.4.2.1 Quantifying Displacement Damage - The NIEL Hypothesis
356(1)
11.4.3 Radiation Damage - Effects on Performance
357(3)
11.4.4 Correlation between Dose, Absorbed Dose and Performance
360(1)
11.4.5 Mitigation Techniques
361(9)
11.4.5.1 Cooling
361(1)
11.4.5.2 Annealing
362(3)
11.4.5.3 Electronic Measures
365(1)
References
365(4)
12 Improving Performance 369(22)
12.1 Introduction
370(1)
12.2 Single Carrier Collection and Correction Techniques
370(6)
12.2.1 Directional Illumination
371(1)
12.2.2 Rise Time Discrimination
371(2)
12.2.3 Bi-Parametric Techniques
373(1)
12.2.4 Stack Geometries
373(2)
12.2.5 Sub-Bandgap Illumination
375(1)
12.3 Electrode Design and the Near Field Effect
376(12)
12.3.1 The Shockley-Ramo Theorem
376(1)
12.3.2 Hemispherical Detectors
377(1)
12.3.3 Coaxial Geometries
378(1)
12.3.4 Frisch Grid/Ring Detectors
379(1)
12.3.5 Coplanar Grid Detectors
380(3)
12.3.6 Drift-Strip Detectors
383(1)
12.3.7 Ring-Drift Detectors
384(1)
12.3.8 Small Pixel Effect Detectors
385(2)
12.3.9 Other Implementations
387(1)
12.3.10 Combinations of Techniques
388(1)
12.4 Discussion and Conclusions
388(1)
References
388(3)
13 Future Directions in Radiation Detection 391(24)
13.1 The Immediate Future
391(2)
13.1.1 General Requirements on Detector Material
392(1)
a Bandgap and Pair Creation Energy
392(1)
b Transport Properties
393(1)
13.2 Near Term Developments
393(3)
13.2.1 Reduced Dimensionality
395(1)
13.3 Radiation Detection Using Nano-Technology
396(9)
13.3.1 0-D Materials
397(2)
13.3.1.1 Nano-Scintillators
398(1)
13.3.2 1-D Materials
399(1)
13.3.3 2-D Materials
400(4)
13.3.3.1 Device Implementation
402(2)
13.3.4 Quantum Heterostructures
404(1)
13.4 New Approaches to Radiation Detection
405(5)
13.4.1 Biological Detection Systems and Intelligent Photonics
405(2)
13.4.2 Exploiting Other Degrees of Freedom
407(3)
13.4.2.1 Spintronics
407(2)
13.4.2.2 Valleytronics
409(1)
References
410(5)
Appendix A: Supplementary Reference Material and Further Reading List 415(2)
Appendix B: Table of Physical Constants 417(2)
Appendix C: Units and Conversions 419(4)
Appendix D: Periodic Table of the Elements 423(2)
Appendix E: Properties of the Elements 425(4)
Appendix F: General Properties of Semiconducting Materials 429(30)
Appendix G: Radiation Environments 459(8)
Appendix H: Table of Radioactive Calibration Sources 467(18)
Index 485
Dr. Alan Owens holds an undergraduate honours degree in physics and physical electronics and earned his doctorate in astrophysics from the University of Durham, United Kingdom. He spent over 35 years engaged in the design and construction of novel detection systems for X- and gamma-ray astronomy, mostly as a staff physicist at the European Space Agency's European Space Research and Technology Centre (ESTEC) in the Netherlands and presently as a Senior Advisor at the Institute of Experimental and Applied Physics in Prague in the Czech Republic. Dr. Owens has previously authored Compound Semiconductor Radiation Detector (CRC Press, 2012).

He also holds an honorary senior lectureship in space science at the University of Leicester, United Kingdom. Dr. Owens is currently involved in the development and exploitation of new technologies for space applications. Much of this work revolves around compound semiconductors for radiation detection and measurement, which by its very nature involves materials and systems at a low maturity level. Consequently, he has been involved in all aspects of a systematic and long-term program on material assessment, production, processing, detector fabrication and characterization for a large number of compound semiconductors.