List of Acronyms |
|
xvii | |
Preface |
|
xxi | |
About the Author |
|
xxiii | |
1 Introduction to Radiation and Its Detection: An Historical Perspective |
|
1 | (18) |
|
1.1 The Discovery of Radiation |
|
|
1 | (3) |
|
1.1.1 Understanding the Atom and Its Structure |
|
|
3 | (1) |
|
|
4 | (2) |
|
1.2.1 Early Monitoring Devices |
|
|
4 | (1) |
|
1.2.2 Early Recording Devices |
|
|
4 | (1) |
|
1.2.3 Electro-Optical Approaches |
|
|
5 | (1) |
|
1.3 Early Work with Semiconductors |
|
|
6 | (5) |
|
1.3.1 Photoconduction Detectors |
|
|
7 | (1) |
|
1.3.2 Do Semiconductors Exist? |
|
|
7 | (1) |
|
1.3.3 Theoretical Stagnation and Salvation |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (2) |
|
1.4.1 The Current Situation |
|
|
11 | (2) |
|
1.4.1.1 Other Technologies |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.5.1 Exploring the Nano-Scale Properties of Materials |
|
|
13 | (1) |
|
1.5.2 Exploiting New Degrees of Freedom |
|
|
14 | (1) |
|
1.5.3 Biological Based Detection Systems |
|
|
14 | (1) |
|
|
14 | (5) |
2 Semiconductors |
|
19 | (32) |
|
2.1 Metals, Semiconductors and Insulators |
|
|
20 | (1) |
|
2.2 Energy Band Formation |
|
|
20 | (2) |
|
2.3 General Properties of the Bandgap |
|
|
22 | (6) |
|
|
23 | (1) |
|
2.3.2 Carrier Generation and Recombination |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.3.3 Pressure Dependence of the Bandgap |
|
|
24 | (1) |
|
2.3.4 Temperature Dependence of the Bandgap |
|
|
25 | (1) |
|
|
25 | (3) |
|
2.3.5.1 Electrons in Solids |
|
|
26 | (1) |
|
2.3.5.2 Electrons in the Conduction Band |
|
|
27 | (1) |
|
2.3.5.3 Band Sub-Structure |
|
|
28 | (1) |
|
|
28 | (4) |
|
|
30 | (2) |
|
|
32 | (4) |
|
|
33 | (2) |
|
2.5.1.1 Acoustic Modes and Acoustic Phonon Scattering |
|
|
34 | (1) |
|
2.5.1.2 Optical Modes and Optical Phonon Scattering |
|
|
35 | (1) |
|
2.5.2 Impurity Scattering |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (3) |
|
2.7.1 Saturated Carrier Velocities |
|
|
37 | (1) |
|
|
37 | (2) |
|
2.7.3 Avalanche Breakdown |
|
|
39 | (1) |
|
2.8 Conduction in Semiconductors |
|
|
40 | (9) |
|
2.8.1 Intrinsic Semiconductors |
|
|
40 | (4) |
|
2.8.1.1 Intrinsic Carrier Concentration |
|
|
40 | (4) |
|
2.8.2 Extrinsic Semiconductors |
|
|
44 | (4) |
|
2.8.2.1 Donors and Acceptors |
|
|
46 | (1) |
|
2.8.2.2 Extrinsic Carrier Concentration |
|
|
47 | (1) |
|
2.8.2.3 Doping Dependence of the Energy Bandgap |
|
|
47 | (1) |
|
2.8.2.4 Practical Considerations |
|
|
48 | (1) |
|
2.8.3 Conductivity and Resistivity |
|
|
48 | (1) |
|
|
49 | (2) |
3 Crystal Structure |
|
51 | (26) |
|
|
52 | (1) |
|
|
53 | (4) |
|
|
53 | (1) |
|
3.2.2 Relationship between Lattices, Unit Cells and Atomic Arrangement |
|
|
53 | (1) |
|
3.2.3 Crystal Systems and the Bravais Lattice |
|
|
54 | (1) |
|
3.2.4 The Pearson Notation |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
3.3 Underlying Crystal Structure of Compound Semiconductors |
|
|
57 | (6) |
|
3.3.1 Lattice Constant and Bandgap Energy of Alloy Semiconductors |
|
|
59 | (1) |
|
|
60 | (1) |
|
3.3.3 Common Semiconductor Structures |
|
|
60 | (1) |
|
3.3.4 Polycrystalline and Amorphous Structures |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
63 | (9) |
|
3.5.1 Defect Classification and Morphology |
|
|
64 | (1) |
|
|
65 | (1) |
|
3.5.3 Line Defects (Dislocations) |
|
|
66 | (2) |
|
3.5.3.1 Edge Dislocations |
|
|
67 | (1) |
|
3.5.3.2 Screw Dislocations |
|
|
68 | (1) |
|
|
68 | (3) |
|
|
69 | (1) |
|
|
69 | (2) |
|
3.5.5 Volume or Bulk Defects |
|
|
71 | (1) |
|
|
72 | (1) |
|
3.6.1 Point Defect Engineering |
|
|
72 | (1) |
|
3.6.2 Line Defect Engineering |
|
|
72 | (1) |
|
3.6.3 Plane Defect Engineering |
|
|
73 | (1) |
|
|
73 | (4) |
4 Growth Techniques |
|
77 | (36) |
|
|
78 | (1) |
|
4.2 Base Material Production |
|
|
79 | (3) |
|
4.2.1 Material Purification |
|
|
79 | (3) |
|
4.2.1.1 Recrystallization |
|
|
80 | (1) |
|
4.2.1.2 Vacuum Distillation/Sublimation |
|
|
80 | (1) |
|
|
80 | (2) |
|
|
82 | (2) |
|
4.3.1 Phases and Solidification |
|
|
82 | (2) |
|
4.4 Bulk Growth Techniques |
|
|
84 | (10) |
|
4.4.1 Hydrothermal Synthesis |
|
|
84 | (1) |
|
|
85 | (3) |
|
4.4.2.1 Liquid Encapsulated Czochralski (LEC) |
|
|
86 | (1) |
|
4.4.2.2 Limitations of the Czochralski Method |
|
|
87 | (1) |
|
4.4.2.3 Vapor Pressure Controlled Czochralski (VCZ) |
|
|
87 | (1) |
|
4.4.3 Bridgman-Stockbarger (B-S) |
|
|
88 | (2) |
|
4.4.3.1 High Pressure Bridgman (HPB) |
|
|
88 | (1) |
|
4.4.3.2 Vertical Gradient Freeze (VGF) |
|
|
89 | (1) |
|
4.4.4 Travelling Molten Zone ((TMZ) or Heater Method (THM) |
|
|
90 | (1) |
|
4.4.5 Float-Zone Growth Technique (FZ) |
|
|
91 | (1) |
|
4.4.6 Vapor Phase Growth (VPG) |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
94 | (4) |
|
|
94 | (1) |
|
4.5.2 Strain and Electronic Properties |
|
|
95 | (1) |
|
|
95 | (1) |
|
4.5.4 Van der Waals Epitaxy (VDWE) |
|
|
96 | (1) |
|
4.5.5 Bandgap Engineering |
|
|
97 | (1) |
|
4.5.6 Semiconductor Structures |
|
|
98 | (1) |
|
4.6 Film Growth Techniques |
|
|
98 | (12) |
|
4.6.1 Solid Phase Epitaxy (SPE) |
|
|
98 | (1) |
|
4.6.2 Liquid Phase Epitaxy (LPE) |
|
|
99 | (2) |
|
4.6.2.1 Tipping Furnace Method |
|
|
99 | (1) |
|
4.6.2.2 Vertical Dipping System |
|
|
99 | (1) |
|
4.6.2.3 Sliding Boat Method |
|
|
100 | (1) |
|
4.6.3 Vapor Phase Epitaxy (VPE) |
|
|
101 | (5) |
|
4.6.3.1 Chemical Vapor Deposition (CVD) |
|
|
102 | (1) |
|
4.6.3.2 Metal Organic Chemical Vapor Deposition (MOCVD) |
|
|
103 | (2) |
|
4.6.3.3 The Multi-Tube PVT (MTPVT) Technique |
|
|
105 | (1) |
|
4.6.4 Physical Vapor Deposition (PVD) |
|
|
106 | (8) |
|
|
107 | (1) |
|
|
107 | (2) |
|
4.6.4.3 Molecular-Beam Epitaxy (MBE) |
|
|
109 | (1) |
|
|
110 | (3) |
5 Contacting Systems |
|
113 | (26) |
|
|
114 | (1) |
|
5.1.1 Low-Resistance or "Ohmic" Contacts |
|
|
115 | (1) |
|
5.1.2 Schottky or Blocking Contacts |
|
|
115 | (1) |
|
5.1.3 Contacting Technologies |
|
|
115 | (1) |
|
5.2 Metal Semiconductor Interfaces |
|
|
115 | (1) |
|
|
116 | (8) |
|
|
118 | (1) |
|
5.3.2 Image Force Reduction of the Schottky Barrier |
|
|
119 | (1) |
|
5.3.3 Barrier Width - Ideal Case |
|
|
120 | (1) |
|
|
121 | (1) |
|
5.3.4 Junction Capacitance |
|
|
121 | (2) |
|
|
123 | (1) |
|
5.3.6 Metal-Induced Gap States (MIGS) |
|
|
123 | (1) |
|
5.3.7 Fermi Level Pinning |
|
|
124 | (1) |
|
5.4 Current Transport across a Schottky Barrier |
|
|
124 | (5) |
|
5.4.1 Thermionic Emission (TE) |
|
|
125 | (1) |
|
5.4.2 Thermally Assisted Field Emission (TFE) |
|
|
126 | (1) |
|
5.4.3 Field Emission (FE) |
|
|
126 | (1) |
|
5.4.4 Relative Contributions of TE, TFE and FE |
|
|
127 | (1) |
|
5.4.5 Estimated Contact Resistances for TE, FTE and FE Current Modes |
|
|
127 | (1) |
|
5.4.6 Other Current Components |
|
|
128 | (1) |
|
5.4.6.1 Current Due to Image Force Lowering of the Potential Barrier |
|
|
128 | (1) |
|
5.4.6.2 Generation-Recombination Effects |
|
|
128 | (1) |
|
5.4.6.3 Surface Leakage Current |
|
|
129 | (1) |
|
5.4.7 Practical Application of Schottky Barriers |
|
|
129 | (1) |
|
|
129 | (5) |
|
5.5.1 Practical Ohmic Contacts |
|
|
130 | (1) |
|
5.5.2 Barrier Height Reduction |
|
|
131 | (2) |
|
|
131 | (1) |
|
5.5.2.2 Doping Concentration |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
5.5.3 Barrier Width Reduction |
|
|
133 | (1) |
|
5.5.4 Introducing Recombination Centers |
|
|
133 | (1) |
|
5.6 Desirable Properties of Ohmic Contacts |
|
|
134 | (1) |
|
5.6.1 Non-Ideal Effects in Metal-Semiconductor Junctions |
|
|
135 | (1) |
|
5.7 Contact-Less (Proximity Effect) Readout |
|
|
135 | (1) |
|
|
136 | (3) |
6 Detector Fabrication |
|
139 | (44) |
|
|
140 | (1) |
|
6.2 Mechanical Processing Overview |
|
|
141 | (6) |
|
|
141 | (1) |
|
|
141 | (1) |
|
6.2.3 Lapping and Polishing |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (3) |
|
|
145 | (1) |
|
|
145 | (1) |
|
6.2.5.3 Surface Conditioning |
|
|
146 | (1) |
|
6.3 Electrode Deposition Methods |
|
|
147 | (3) |
|
6.3.1 Metal Paints and Pastes |
|
|
148 | (1) |
|
|
148 | (1) |
|
6.3.3 Physical Vapor Deposition (PVD) |
|
|
149 | (2) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (4) |
|
|
152 | (3) |
|
|
153 | (1) |
|
6.5.1.2 Bulk Leakage Currents |
|
|
154 | (1) |
|
6.5.1.3 Suppressing Surface Leakage Currents |
|
|
154 | (1) |
|
6.6 Processing Electronics |
|
|
155 | (13) |
|
6.6.1 Front End - Choice of Preamplifiers |
|
|
155 | (4) |
|
6.6.1.1 Limitations of Resistive Feedback Preamplifiers |
|
|
158 | (1) |
|
6.6.1.2 Pile-Up and Baseline Restoration |
|
|
158 | (1) |
|
|
159 | (4) |
|
|
159 | (3) |
|
6.6.2.2 Pole-Zero Cancellation (Tail Cancellation) |
|
|
162 | (1) |
|
6.6.2.3 Baseline Restoration |
|
|
162 | (1) |
|
6.6.2.4 Pile-Up Rejection |
|
|
163 | (1) |
|
6.6.3 Analog-to-Digital Conversion |
|
|
163 | (3) |
|
|
164 | (1) |
|
|
165 | (1) |
|
6.6.3.3 Successive Approximation ADC |
|
|
166 | (1) |
|
6.6.4 Digital Signal Processing |
|
|
166 | (2) |
|
|
168 | (12) |
|
|
169 | (1) |
|
|
169 | (1) |
|
6.7.1.2 Cryogenic Cooling |
|
|
169 | (1) |
|
|
170 | (4) |
|
6.7.2.1 Application to Detectors |
|
|
172 | (1) |
|
6.7.2.2 Reducing Microphonics |
|
|
173 | (1) |
|
6.7.3 Thermoelectric Cooling |
|
|
174 | (6) |
|
6.7.3.1 The Peltier Effect |
|
|
174 | (1) |
|
6.7.3.2 Quantifying the Effect |
|
|
175 | (2) |
|
6.7.3.3 Thermoelectric Cooler (TEC) Construction |
|
|
177 | (1) |
|
|
178 | (1) |
|
6.7.3.5 Sizing a TEC for a Detector |
|
|
179 | (1) |
|
6.7.4 Summary and Comparison of Cooling Systems |
|
|
180 | (1) |
|
|
180 | (3) |
7 Detector Characterization |
|
183 | (44) |
|
|
184 | (1) |
|
|
184 | (2) |
|
7.2.1 Compositional Analysis |
|
|
184 | (1) |
|
|
185 | (1) |
|
7.2.2.1 Inductively Coupled Plasma Spectroscopy (ICP-MS and ICP-OES) |
|
|
186 | (1) |
|
7.2.2.2 Glow-Discharge Mass Spectrometry (GDMS) |
|
|
186 | (1) |
|
7.3 Crystallographic Characterization |
|
|
186 | (3) |
|
7.3.1 Single Crystal X-Ray Diffraction |
|
|
186 | (2) |
|
|
188 | (1) |
|
7.3.3 Rocking Curve (RC) Measurements |
|
|
188 | (1) |
|
7.3.4 XRD and Detector Performance |
|
|
189 | (1) |
|
7.4 Electrical Characterization |
|
|
189 | (7) |
|
7.4.1 Current-Voltage (I-V) Measurements |
|
|
190 | (2) |
|
7.4.2 Contact Characterization |
|
|
192 | (1) |
|
7.4.3 Measuring Contact Resistance |
|
|
192 | (2) |
|
7.4.4 Capacitance-Voltage (C-V) Measurements |
|
|
194 | (2) |
|
7.5 Electronic Characterization |
|
|
196 | (4) |
|
7.5.1 Determining the Majority Carrier |
|
|
196 | (1) |
|
7.5.2 Determining Effective Mass |
|
|
196 | (1) |
|
|
196 | (4) |
|
7.5.3.1 Hall Effect Measurements |
|
|
199 | (1) |
|
7.5.3.2 Van Der Pauw Method |
|
|
199 | (1) |
|
7.6 Evaluating the Charge Transport Properties |
|
|
200 | (7) |
|
7.6.1 Probing the Electric Field |
|
|
201 | (1) |
|
7.6.2 Estimating the Mobilities |
|
|
202 | (2) |
|
7.6.3 Estimating the Mu-Tau (Kr) Products |
|
|
204 | (2) |
|
7.6.4 Limitations of the Hecht Equation |
|
|
206 | (1) |
|
7.6.5 Measuring the Charge Collection Efficiency |
|
|
207 | (1) |
|
7.7 Defect Characterization |
|
|
207 | (3) |
|
7.7.1 Thermally Stimulated Current (TSC) Spectroscopy |
|
|
208 | (1) |
|
7.7.2 Deep Level Transient Spectroscopy |
|
|
208 | (1) |
|
7.7.3 Photo-Induced Current Transient Spectroscopy (PICTS) |
|
|
209 | (1) |
|
|
210 | (13) |
|
7.8.1 Synchrotron Radiation |
|
|
210 | (1) |
|
|
210 | (1) |
|
7.8.3 Synchrotron Radiation Facilities |
|
|
211 | (2) |
|
7.8.4 Properties of the Beam |
|
|
213 | (1) |
|
|
213 | (1) |
|
7.8.6 Installing the Detector |
|
|
214 | (1) |
|
7.8.7 Harmonic Suppression |
|
|
214 | (1) |
|
7.8.8 Extending the Energy Range |
|
|
215 | (1) |
|
7.8.9 Detector Characterization |
|
|
215 | (2) |
|
7.8.10 Spatially Resolved Spectroscopy |
|
|
217 | (1) |
|
7.8.11 Probing Depth Dependences |
|
|
217 | (1) |
|
7.8.12 Pump and Probe Techniques |
|
|
217 | (3) |
|
|
220 | (1) |
|
7.8.14 X-Ray Absorption Fine Structure (XAFS) Metrology |
|
|
221 | (1) |
|
7.8.15 Structural Studies |
|
|
221 | (1) |
|
7.8.16 Topographical and Surface Studies |
|
|
222 | (1) |
|
|
223 | (4) |
8 Radiation Detection and Measurement |
|
227 | (34) |
|
8.1 Interaction of Radiation with Matter |
|
|
228 | (1) |
|
|
228 | (3) |
|
8.2.1 Energy Loss of Secondary Electrons - Collisional and Bremsstrahlung |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (12) |
|
8.4.1 Photoelectric Effect |
|
|
232 | (5) |
|
8.4.1.1 The Ejection Process |
|
|
233 | (1) |
|
8.4.1.2 The De-Excitation Process |
|
|
234 | (1) |
|
8.4.1.3 Characteristic Lines and Selection Rules |
|
|
235 | (2) |
|
8.4.2 Coherent Scattering - Thomson and Rayleigh Scattering |
|
|
237 | (1) |
|
8.4.3 Incoherent Scattering - Compton Scattering |
|
|
238 | (2) |
|
|
240 | (2) |
|
8.4.5 Attenuation and Absorption of Electromagnetic Radiation |
|
|
242 | (2) |
|
8.5 Radiation Detection Using Semiconductors |
|
|
244 | (14) |
|
|
244 | (1) |
|
|
244 | (6) |
|
8.5.2.1 Current Generation in Photoconductors |
|
|
246 | (1) |
|
8.5.2.2 Noise in Photoconductors |
|
|
247 | (2) |
|
8.5.2.3 Photoconductor Performance Metrics |
|
|
249 | (1) |
|
|
249 | (1) |
|
8.5.2.3.2 Noise Equivalent Power (NEP) |
|
|
250 | (1) |
|
|
250 | (1) |
|
8.5.3 The Solid-State Ionization Chamber |
|
|
250 | (13) |
|
8.5.3.1 Spectral Broadening in Radiation Detection Systems |
|
|
252 | (24) |
|
|
253 | (1) |
|
8.5.3.1.2 Electronic Noise |
|
|
254 | (3) |
|
|
257 | (1) |
|
|
258 | (3) |
9 Materials Used for General Radiation Detection |
|
261 | (62) |
|
9.1 Semiconductors and Radiation Detection |
|
|
263 | (1) |
|
9.2 Group IV and IV-IV Materials |
|
|
263 | (7) |
|
|
263 | (2) |
|
|
265 | (1) |
|
|
266 | (2) |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
270 | (1) |
|
9.4 Group III-V Materials and Alloys |
|
|
270 | (8) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
272 | (2) |
|
|
274 | (1) |
|
|
274 | (1) |
|
|
275 | (1) |
|
9.4.7 Narrow Gap Materials |
|
|
276 | (1) |
|
|
276 | (1) |
|
9.4.7.2 Indium Antimonide |
|
|
276 | (1) |
|
9.4.8 Aluminum Gallium Arsenide |
|
|
277 | (1) |
|
9.4.9 Aluminum Indium Phosphide |
|
|
278 | (1) |
|
9.4.10 Indium Gallium Phosphide |
|
|
278 | (1) |
|
9.5 Group II-VI Materials and Alloys |
|
|
278 | (8) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
9.5.4 Cadmium Zinc Telluride |
|
|
281 | (1) |
|
9.5.5 Cadmium Manganese Telluride |
|
|
281 | (2) |
|
9.5.6 Cadmium Magnesium Telluride |
|
|
283 | (1) |
|
9.5.7 Cadmium Zinc Selenide |
|
|
284 | (1) |
|
9.5.8 Cadmium Telluride Selenide |
|
|
284 | (1) |
|
9.5.9 Mercury Cadmium Telluride |
|
|
285 | (1) |
|
9.6 Group I-VII Materials |
|
|
286 | (1) |
|
|
286 | (1) |
|
9.7 Group III-VI Materials |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
9.8 Group n-VII Materials and Alloys |
|
|
287 | (9) |
|
|
287 | (1) |
|
9.8.2 Mercuric Bromoiodide |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (1) |
|
9.8.7 Thallium Mixed Halides |
|
|
292 | (1) |
|
9.8.7.1 Thallium Bromoiodide |
|
|
293 | (1) |
|
9.8.7.2 Thallium Bromochloride |
|
|
293 | (1) |
|
|
293 | (1) |
|
9.8.9 Antimony Tri-Iodide |
|
|
294 | (1) |
|
9.8.10 Bismuth Tri-Iodide |
|
|
294 | (2) |
|
|
296 | (1) |
|
|
296 | (6) |
|
9.9.1 Lithium Chalcogenides |
|
|
296 | (1) |
|
9.9.2 Cesium Thiomercurate |
|
|
296 | (1) |
|
9.9.3 Cesium-Based Perovskite Halides |
|
|
297 | (1) |
|
9.9.4 Copper Chalcogenides |
|
|
297 | (1) |
|
9.9.5 Mercury Chalcogenides |
|
|
298 | (1) |
|
9.9.6 Thallium Lead Iodide |
|
|
298 | (1) |
|
9.9.7 Thallium Chalcohalides |
|
|
298 | (2) |
|
9.9.7.1 Thallium Gallium Selenide |
|
|
299 | (1) |
|
9.9.7.2 Thallium Iodide Selenide |
|
|
299 | (1) |
|
9.9.8 Other Thallium Ternary Compounds |
|
|
300 | (1) |
|
|
301 | (1) |
|
9.9.9.1 Lead Gallium Selenide |
|
|
301 | (1) |
|
9.9.9.2 Lead Selenophosphate |
|
|
301 | (1) |
|
9.10 Quaternary Compounds |
|
|
302 | (1) |
|
9.11 Organic Semiconductors |
|
|
302 | (6) |
|
|
302 | (3) |
|
|
305 | (1) |
|
9.11.3 Electronic Organic Materials |
|
|
306 | (1) |
|
|
307 | (1) |
|
9.11.5 Poly(3,4-ethylenedioxythiothene) (PEDOT) |
|
|
307 | (1) |
|
9.11.6 Polyaniline (PANT) |
|
|
307 | (1) |
|
9.11.7 4-hydrocyanobenzene (4HCB) |
|
|
308 | (1) |
|
9.12 Hybrid Organic-Inorganic Semiconductors |
|
|
308 | (3) |
|
9.12.1 Hybrid Organic-Inorganic Perovskites |
|
|
309 | (15) |
|
9.12.1.1 Methylammonium Lead Halides |
|
|
309 | (1) |
|
9.12.1.2 Formamidinium Lead Halides |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (11) |
10 Current Materials Used for Neutron Detection |
|
323 | (20) |
|
|
323 | (1) |
|
10.2 Indirect Neutron Detection |
|
|
324 | (5) |
|
10.2.1 Increasing Efficiency |
|
|
326 | (1) |
|
|
326 | (1) |
|
10.2.3 Three-Dimensional Structures |
|
|
326 | (3) |
|
10.2.3.1 Perforated Structures |
|
|
327 | (1) |
|
10.2.3.2 Pillar Structures |
|
|
327 | (1) |
|
10.2.3.3 Trenched Structures |
|
|
328 | (1) |
|
10.3 Direct Neutron Detection |
|
|
329 | (9) |
|
10.3.1 Choice of Semiconductor |
|
|
329 | (1) |
|
10.3.2 Cadmium Based Devices |
|
|
330 | (1) |
|
10.3.3 Mercury Based Devices |
|
|
330 | (1) |
|
10.3.4 Lithium Based Devices |
|
|
330 | (1) |
|
10.3.5 Uranium Based Devices |
|
|
331 | (1) |
|
10.3.6 Boron Based Devices |
|
|
332 | (13) |
|
10.3.6.1 Boron Doping and Alloying |
|
|
332 | (1) |
|
|
333 | (2) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
335 | (2) |
|
|
337 | (1) |
|
|
338 | (5) |
11 Performance Limiting Factors |
|
343 | (26) |
|
|
344 | (1) |
|
|
345 | (3) |
|
11.2.1 Intrinsic Components |
|
|
345 | (2) |
|
11.2.2 External Components |
|
|
347 | (1) |
|
11.2.3 Bulk Leakage Currents |
|
|
347 | (1) |
|
11.2.4 Surface Leakage Currents |
|
|
348 | (1) |
|
11.3 Polarization Effects |
|
|
348 | (5) |
|
11.3.1 Polarization Taxonomy |
|
|
349 | (1) |
|
11.3.2 Polarization in CdTe Detectors |
|
|
349 | (2) |
|
11.3.2.1 Bias-Induced Polarization |
|
|
349 | (1) |
|
11.3.2.2 Radiation-Induced Polarization |
|
|
350 | (1) |
|
11.3.2.3 Eliminating Polarization in CdTe |
|
|
350 | (1) |
|
11.3.3 Polarization in CdZnTe Detectors |
|
|
351 | (1) |
|
11.3.4 Polarization in HgI2 Detectors |
|
|
351 | (1) |
|
11.3.5 Polarization in TlBr Detectors |
|
|
352 | (1) |
|
|
353 | (12) |
|
11.4.1 Ionization Damage and Its Effects |
|
|
353 | (1) |
|
11.4.2 Displacement Damage |
|
|
354 | (3) |
|
11.4.2.1 Quantifying Displacement Damage - The NIEL Hypothesis |
|
|
356 | (1) |
|
11.4.3 Radiation Damage - Effects on Performance |
|
|
357 | (3) |
|
11.4.4 Correlation between Dose, Absorbed Dose and Performance |
|
|
360 | (1) |
|
11.4.5 Mitigation Techniques |
|
|
361 | (9) |
|
|
361 | (1) |
|
|
362 | (3) |
|
11.4.5.3 Electronic Measures |
|
|
365 | (1) |
|
|
365 | (4) |
12 Improving Performance |
|
369 | (22) |
|
|
370 | (1) |
|
12.2 Single Carrier Collection and Correction Techniques |
|
|
370 | (6) |
|
12.2.1 Directional Illumination |
|
|
371 | (1) |
|
12.2.2 Rise Time Discrimination |
|
|
371 | (2) |
|
12.2.3 Bi-Parametric Techniques |
|
|
373 | (1) |
|
|
373 | (2) |
|
12.2.5 Sub-Bandgap Illumination |
|
|
375 | (1) |
|
12.3 Electrode Design and the Near Field Effect |
|
|
376 | (12) |
|
12.3.1 The Shockley-Ramo Theorem |
|
|
376 | (1) |
|
12.3.2 Hemispherical Detectors |
|
|
377 | (1) |
|
12.3.3 Coaxial Geometries |
|
|
378 | (1) |
|
12.3.4 Frisch Grid/Ring Detectors |
|
|
379 | (1) |
|
12.3.5 Coplanar Grid Detectors |
|
|
380 | (3) |
|
12.3.6 Drift-Strip Detectors |
|
|
383 | (1) |
|
12.3.7 Ring-Drift Detectors |
|
|
384 | (1) |
|
12.3.8 Small Pixel Effect Detectors |
|
|
385 | (2) |
|
12.3.9 Other Implementations |
|
|
387 | (1) |
|
12.3.10 Combinations of Techniques |
|
|
388 | (1) |
|
12.4 Discussion and Conclusions |
|
|
388 | (1) |
|
|
388 | (3) |
13 Future Directions in Radiation Detection |
|
391 | (24) |
|
13.1 The Immediate Future |
|
|
391 | (2) |
|
13.1.1 General Requirements on Detector Material |
|
|
392 | (1) |
|
a Bandgap and Pair Creation Energy |
|
|
392 | (1) |
|
|
393 | (1) |
|
13.2 Near Term Developments |
|
|
393 | (3) |
|
13.2.1 Reduced Dimensionality |
|
|
395 | (1) |
|
13.3 Radiation Detection Using Nano-Technology |
|
|
396 | (9) |
|
|
397 | (2) |
|
13.3.1.1 Nano-Scintillators |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
400 | (4) |
|
13.3.3.1 Device Implementation |
|
|
402 | (2) |
|
13.3.4 Quantum Heterostructures |
|
|
404 | (1) |
|
13.4 New Approaches to Radiation Detection |
|
|
405 | (5) |
|
13.4.1 Biological Detection Systems and Intelligent Photonics |
|
|
405 | (2) |
|
13.4.2 Exploiting Other Degrees of Freedom |
|
|
407 | (3) |
|
|
407 | (2) |
|
|
409 | (1) |
|
|
410 | (5) |
Appendix A: Supplementary Reference Material and Further Reading List |
|
415 | (2) |
Appendix B: Table of Physical Constants |
|
417 | (2) |
Appendix C: Units and Conversions |
|
419 | (4) |
Appendix D: Periodic Table of the Elements |
|
423 | (2) |
Appendix E: Properties of the Elements |
|
425 | (4) |
Appendix F: General Properties of Semiconducting Materials |
|
429 | (30) |
Appendix G: Radiation Environments |
|
459 | (8) |
Appendix H: Table of Radioactive Calibration Sources |
|
467 | (18) |
Index |
|
485 | |