Atjaunināt sīkdatņu piekrišanu

E-grāmata: Semimartingales and their Statistical Inference

(Indian Statistical Institute, New Delhi, India)
  • Formāts - EPUB+DRM
  • Cena: 78,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Presents a complete discussion of the asymptotic theory of statistical inference for semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. Examines topics including asymptotic likelihood theory, quasi likelihood, and inference for counting processes, and addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. Looks at new and challenging statistical and probabilistic problems facing today's researchers. Includes chapter exercises. The author is associated with the Indian Statistical Institute in New Delhi, India. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability.
The class of semimartingales includes a large class of stochastic processes, including diffusion type processes, point processes, and diffusion type processes with jumps, widely used for stochastic modeling. Until now, however, researchers have had no single reference that collected the research conducted on the asymptotic theory for semimartingales.

Semimartingales and their Statistical Inference, fills this need by presenting a comprehensive discussion of the asymptotic theory of semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. The author brings together into one volume the state-of-the-art in the inferential aspect for such processes. The topics discussed include:

  • Asymptotic likelihood theory
  • Quasi-likelihood
  • Likelihood and efficiency
  • Inference for counting processes
  • Inference for semimartingale regression models

    The author addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. He also includes some of the new and challenging statistical and probabilistic problems facing today's active researchers working in the area of inference for stochastic processes.
  • Recenzijas

    "This is a book for experienced statisticians and modellers and it is certainly to be recommended for libraries." --C. C. Heyde, Australian National University, Canberra,

    Preface xi
    Semimartingales
    1(150)
    Introduction
    1(1)
    Stochastic Processes
    2(20)
    Martingales
    11(11)
    Doob-Meyer Decomposition
    22(5)
    Stochastic Integration
    27(22)
    Stochastic Integrals with Respect to a Wiener Process
    27(12)
    Stochastic Integration with Respect to a Square Integrable Martingale
    39(3)
    Quadratic Characteristic and Quadratic Variation Processes
    42(5)
    Central Limit Theorem
    47(2)
    Local Martingales
    49(22)
    Stochastic Integral with Respect to a Local Martingale
    53(3)
    Some Inequalities for Local Martingales
    56(4)
    Strong Law of Large Numbers
    60(3)
    A Martingale Conditional Law
    63(2)
    Limit Theorems for Continuous Local Martingales
    65(3)
    Some Additional Results on Stochastic Integrals with Respect to Square Integrable Local Martingales
    68(3)
    Semimartingales
    71(26)
    Stochastic Integral with Respect to a Semimartingale
    73(1)
    Product Formulae for Semimartingales
    74(1)
    Generalized Ito-Ventzell Formula
    75(2)
    Convergence of Quadratic Variation of Semimartingales
    77(1)
    Yoerup's Theorem for Local Martingales
    78(8)
    Stochastic Differential Equations
    86(1)
    Random Measures
    87(3)
    Stochastic Integral with Respect to the Measure μ - ν
    90(2)
    Decomposition of Local Martingales Using Stochastic Integrals
    92(5)
    Girsanov's Theorem
    97(8)
    Girsanov's Theorem for Semimartingales
    101(1)
    Girsanov's Theorem for Semimartingales (Multidimensional Version)
    102(2)
    Gaussian Martingales
    104(1)
    Limit Theorems for Semimartingales
    105(10)
    Stable Convergence of Semimartingales
    107(8)
    Diffusion-Type Processes
    115(15)
    Diffusion Processes
    115(4)
    Eigen Functions and Martingales
    119(3)
    Stochastic Modeling
    122(1)
    Examples of Diffusion Processes
    123(2)
    Diffusion-Type Processes
    125(5)
    Point Processes
    130(21)
    Univariate Point Process (Simple)
    130(7)
    Multivariate Point Process
    137(1)
    Doubly Stochastic Poisson Process
    137(3)
    Stochastic Time Change
    140(4)
    References
    144(7)
    Exponential Families of Stochastic Processes
    151(20)
    Introduction
    151(3)
    Exponential Families of Semimartingales
    154(11)
    Stochastic Time Transformation
    165(6)
    References
    169(2)
    Asymptotic Likelihood Theory
    171(30)
    Introduction
    171(7)
    Different Types of Information and Their Relationships
    171(7)
    Examples
    178(7)
    Asymptotic Likelihood Theory for a Class of Exponential Families of Semimartingales
    185(6)
    Asymptotic Likelihood Theory for General Processes
    191(5)
    Exercises
    196(5)
    References
    198(3)
    Asymptotic Likelihood Theory for Diffusion Processes with Jumps
    201(38)
    Introduction
    201(4)
    Diffusions with Jumps
    201(4)
    Absolute Continuity for Measures Generated by Diffusions with Jumps
    205(5)
    Score Vector and Information Matrix
    210(5)
    Asymptotic Likelihood Theory for Diffusion Processes with Jumps
    215(4)
    Consistency
    215(3)
    Limiting Distribution
    218(1)
    Asymptotic Likelihood Theory for a Special Class of Exponential Families
    219(3)
    Examples
    222(12)
    Exercises
    234(5)
    References
    235(4)
    Quasi Likelihood and Semimartingales
    239(32)
    Quasi Likelihood and Discrete Time Processes
    239(3)
    Quasi Likelihood and Continuous Time Processes
    242(1)
    Quasi Likelihood and Special Semimartingale
    243(14)
    Optimality
    246(6)
    Asymptotic Properties
    252(1)
    Existence and Consistency of the Quasi Likelihood Estimator
    253(3)
    Asymptotic Normality of the Quasi Likelihood Estimator
    256(1)
    Quasi Likelihood and Partially Specified Counting Processes
    257(6)
    Examples
    263(3)
    Exercises
    266(5)
    References
    268(3)
    Local Asymptotic Behavior of Semimartingale Experiments
    271(58)
    Local Asymptotic Mixed Normality
    271(11)
    Regularity Conditions
    274(8)
    Local Asymptotic Quadraticity
    282(11)
    Limiting Distribution
    289(4)
    Local Asymptotic Infinite Divisibility
    293(11)
    Regularity Conditions
    295(9)
    A Stochastic Dominated Convergence Theorem
    304(1)
    Local Asymptotic Normality
    304(5)
    Multiplicative Models
    309(13)
    Counting Processes with Multiplicative Intensity
    311(11)
    Exercises
    322(7)
    References
    327(2)
    Likelihood and Asymptotic Efficiency
    329(52)
    Fully Specified Likelihood (Factorizable Models)
    329(7)
    Local Asymptotic Normality
    332(4)
    Partially Specified Likelihood
    336(13)
    Partial Likelihood and Asymptotic Efficiency
    349(3)
    Partially Specified Likelihood and Asymptotic Efficiency (Counting Processes)
    352(29)
    Improvement of Preliminary Estimators
    372(7)
    References
    379(2)
    Inference for Counting Processes
    381(100)
    Introduction
    381(6)
    Nonhomogeneous Poisson Processes
    381(3)
    Processes of Poisson Type
    384(3)
    Parametric Inference
    387(27)
    Estimation for Nonhomogeneous Poisson Process
    387(3)
    Asymptotic Properties of an MLE
    390(1)
    Limit Behavior of the Likelihood Ratio Process
    391(2)
    Central Limit Theorem
    393(9)
    M-Estimation for a Nonhomogeneous Poisson Process
    402(2)
    Consistency
    404(6)
    Asymptotic Normality
    410(4)
    Semiparametric Inference
    414(10)
    Consistency
    420(2)
    Asymptotic Distribution
    422(2)
    Nonparametric Inference
    424(47)
    Estimation by the Kernel Method (Nonhomogeneous Poisson Process)
    424(17)
    Estimation by the Method of Sieves
    441(8)
    Estimation by the Method of Penalty Functions
    449(5)
    Estimation by the Method of Martingale Estimators
    454(8)
    Maximum Likelihood Estimation
    462(9)
    Additive-Multiplicative Hazard Models
    471(10)
    References
    476(5)
    Inference for Semimartingale Regression Models
    481(52)
    Estimation by the Quasi-Least-Squares Method
    481(14)
    Consistency
    484(8)
    Asymptotic Normality
    492(3)
    Estimation by the Maximum Likelihood Method
    495(21)
    Estimation of Parameters when the Characteristics of the Noise are Known
    497(17)
    Estimator of the Characteristics of the Noise
    514(2)
    Estimation by the Method of Sieves
    516(10)
    Nonlinear Semimartingale Regression Models
    526(7)
    References
    530(3)
    Applications to Stochastic Modeling
    533(10)
    Introduction
    533(1)
    Applications to Engineering and Economic Systems
    533(5)
    Application to Modeling of Neuron Movement in a Nervous System
    538(5)
    References
    541(2)
    A Doleans Measure for Semimartingales and Burkholder's Inequality for Martingales 543(2)
    Doleans Measure
    543(1)
    Burkholder's Inequality for Martingales
    544(1)
    B Interchanging Stochastic Integration and Ordinary Differentiation and Fubini-Type Theorem for Stochastic Integrals 545(8)
    Interchanging Stochastic Integration and Ordinary Differentiation
    545(5)
    Fubini-Type Theorem for Stochastic Integrals
    550(1)
    Sufficient Conditions for the Differntialbility of an Ito Stochastic Integral
    550(3)
    C The Fundamental Identity of Sequential Analysis 553(2)
    D Stieltjes-Lebesgue Calculus 555(10)
    Product Formula
    558(2)
    Application of Product Formula
    560(1)
    Exponential Formula
    561(4)
    E A Useful Lemma 565(4)
    F Contiguity 569(4)
    References
    570(3)
    G Notes 573(6)
    Index 579


    Rao\, B.L.S. Prakasa