Preface |
|
xix | |
Units and Conversions (Approximate) |
|
xxiii | |
Acknowledgments |
|
xxv | |
Author |
|
xxvii | |
1 Instrumentation of an Engineering System |
|
|
|
1 | (1) |
|
1.1 Role of Sensors and Actuators |
|
|
1 | (3) |
|
1.1.1 Importance of Estimation in Sensing |
|
|
3 | (1) |
|
1.1.2 Innovative Sensor Technologies |
|
|
4 | (1) |
|
1.2 Application Scenarios |
|
|
4 | (2) |
|
|
6 | (1) |
|
1.4 Mechatronic Engineering |
|
|
7 | (2) |
|
1.4.1 Mechatronic Approach to Instrumentation |
|
|
8 | (1) |
|
1.4.2 Bottlenecks for Mechatronic Instrumentation |
|
|
8 | (1) |
|
1.5 Control System Architectures |
|
|
9 | (9) |
|
1.5.1 Feedback and Feedforward Control |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.5.3 Programmable Logic Controllers |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.5.4 Distributed Control |
|
|
16 | (1) |
|
1.5.5 Hierarchical Control |
|
|
17 | (1) |
|
1.6 Instrumentation Process |
|
|
18 | (9) |
|
1.6.1 Instrumentation Steps |
|
|
19 | (1) |
|
1.6.2 Application Examples |
|
|
20 | (15) |
|
1.6.2.1 Networked Application |
|
|
20 | (2) |
|
1.6.2.2 Telemedicine System |
|
|
22 | (3) |
|
1.6.2.3 Homecare Robotic System |
|
|
25 | (1) |
|
1.6.2.4 Water Quality Monitoring |
|
|
26 | (1) |
|
1.7 Organization of the Book |
|
|
27 | (2) |
|
|
29 | (2) |
|
|
31 | (4) |
2 Component Interconnection and Signal Conditioning |
|
|
|
35 | (1) |
|
|
35 | (3) |
|
2.1.1 Component Interconnection |
|
|
35 | (2) |
|
2.1.2 Signal Modification and Conditioning |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.2.1 Definition of Impedance |
|
|
38 | (1) |
|
2.2.2 Importance of Impedance Matching in Component Interconnection |
|
|
38 | (1) |
|
2.3 Impedance Matching Methods |
|
|
39 | (19) |
|
2.3.1 Maximum Power Transfer |
|
|
40 | (2) |
|
2.3.2 Power Transfer at Maximum Efficiency |
|
|
42 | (1) |
|
2.3.3 Reflection Prevention in Signal Transmission |
|
|
42 | (2) |
|
|
44 | (4) |
|
2.3.4.1 Cascade Connection of Devices |
|
|
44 | (4) |
|
2.3.4.2 Impedance Matching for Loading Reduction |
|
|
48 | (1) |
|
2.3.5 Impedance Matching in Mechanical Systems |
|
|
48 | (10) |
|
2.3.5.1 Vibration Isolation |
|
|
48 | (7) |
|
2.3.5.2 Mechanical Transmission |
|
|
55 | (3) |
|
|
58 | (15) |
|
2.4.1 Operational Amplifier |
|
|
59 | (2) |
|
2.4.1.1 Differential Input Voltage |
|
|
60 | (1) |
|
2.4.2 Amplifier Performance Ratings |
|
|
61 | (4) |
|
2.4.2.1 Common-Mode Rejection Ratio |
|
|
63 | (2) |
|
2.4.2.2 Use of Feedback in Op-Amps |
|
|
65 | (1) |
|
2.4.3 Voltage, Current, and Power Amplifiers |
|
|
65 | (8) |
|
2.4.4 Instrumentation Amplifiers |
|
|
68 | (4) |
|
2.4.4.1 Differential Amplifier |
|
|
69 | (1) |
|
2.4.4.2 Instrumentation Amplifier |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
2.4.4.5 AC-Coupled Amplifiers |
|
|
72 | (1) |
|
2.4.5 Noise and Ground Loops |
|
|
72 | (4) |
|
2.4.5.1 Ground-Loop Noise |
|
|
72 | (1) |
|
|
73 | (20) |
|
2.5.1 Passive Filters and Active Filters |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (8) |
|
2.5.2.1 Low-Pass Butterworth Filter |
|
|
79 | (5) |
|
|
84 | (2) |
|
|
86 | (4) |
|
2.5.4.1 Resonance-Type Band-Pass Filters |
|
|
87 | (3) |
|
2.5.5 Band-Reject Filters |
|
|
90 | (1) |
|
|
91 | (2) |
|
2.5.6.1 Software Implementation and Hardware Implementation |
|
|
93 | (1) |
|
2.6 Modulators and Demodulators |
|
|
93 | (11) |
|
2.6.1 Amplitude Modulation |
|
|
96 | (2) |
|
2.6.1.1 Analog, Discrete, and Digital AM |
|
|
96 | (1) |
|
2.6.1.2 Modulation Theorem |
|
|
96 | (1) |
|
2.6.1.3 Side Frequencies and Sidebands |
|
|
97 | (1) |
|
2.6.2 Application of Amplitude Modulation |
|
|
98 | (2) |
|
2.6.2.1 Fault Detection and Diagnosis |
|
|
100 | (1) |
|
|
100 | (4) |
|
2.6.3.1 Advantages and Disadvantages of AM |
|
|
101 | (1) |
|
2.6.3.2 Double Sideband Suppressed Carrier |
|
|
102 | (1) |
|
2.6.3.3 Analog AM Hardware |
|
|
102 | (2) |
|
2.7 Data Acquisition Hardware |
|
|
104 | (18) |
|
2.7.1 Digital-to-Analog Converter |
|
|
108 | (5) |
|
|
109 | (4) |
|
2.7.2 Analog-to-Digital Converter |
|
|
113 | (5) |
|
2.7.2.1 Successive Approximation ADC |
|
|
114 | (1) |
|
|
115 | (1) |
|
2.7.2.3 ADC Performance Characteristics |
|
|
116 | (2) |
|
2.7.3 Sample-and-Hold Hardware |
|
|
118 | (1) |
|
|
119 | (3) |
|
2.7.4.1 Analog Multiplexers |
|
|
120 | (1) |
|
2.7.4.2 Digital Multiplexers |
|
|
121 | (1) |
|
|
122 | (9) |
|
|
123 | (2) |
|
2.8.2 Constant-Current Bridge |
|
|
125 | (2) |
|
2.8.3 Hardware Linearization of Bridge Outputs |
|
|
127 | (1) |
|
2.8.3.1 Bridge Amplifiers |
|
|
127 | (1) |
|
2.8.4 Half-Bridge Circuits |
|
|
128 | (1) |
|
|
129 | (2) |
|
|
130 | (1) |
|
2.8.5.2 Wien-Bridge Oscillator |
|
|
131 | (1) |
|
|
131 | (8) |
|
2.9.1 Nature of Nonlinearities |
|
|
131 | (4) |
|
2.9.1.1 Linearization Methods |
|
|
132 | (1) |
|
2.9.1.2 Linearization by Software |
|
|
133 | (1) |
|
2.9.1.3 Linearization by Logic Hardware |
|
|
134 | (1) |
|
2.9.2 Analog Linearizing Hardware |
|
|
135 | (4) |
|
2.9.2.1 Offsetting Circuitry |
|
|
136 | (1) |
|
2.9.2.2 Proportional-Output Hardware |
|
|
137 | (1) |
|
2.9.2.3 Curve-Shaping Hardware |
|
|
138 | (1) |
|
2.10 Miscellaneous Signal-Modification Hardware |
|
|
139 | (8) |
|
|
139 | (3) |
|
|
140 | (1) |
|
2.10.1.2 Analog Phase Shift Hardware |
|
|
140 | (1) |
|
2.10.1.3 Digital Phase Shifter |
|
|
141 | (1) |
|
2.10.2 Voltage-to-Frequency Converters |
|
|
142 | (2) |
|
|
143 | (1) |
|
|
143 | (1) |
|
2.10.3 Frequency-to-Voltage Converter |
|
|
144 | (1) |
|
2.10.4 Voltage-to-Current Converter |
|
|
145 | (1) |
|
2.10.5 Peak-Hold Circuits |
|
|
146 | (1) |
|
|
147 | (4) |
|
|
151 | (16) |
3 Performance Specification and Instrument Rating Parameters |
|
|
|
167 | (1) |
|
3.1 Performance Specification |
|
|
167 | (5) |
|
3.1.1 Parameters for Performance Specification |
|
|
168 | (2) |
|
3.1.1.1 Performance Specification in Design and Control |
|
|
169 | (1) |
|
3.1.1.2 Perfect Measurement Device |
|
|
169 | (1) |
|
3.1.2 Dynamic Reference Models |
|
|
170 | (2) |
|
3.1.2.1 First-Order Model |
|
|
170 | (2) |
|
3.1.2.2 Simple Oscillator Model |
|
|
172 | (1) |
|
3.2 Time-Domain Specifications |
|
|
172 | (4) |
|
3.2.1 Stability and Speed of Response |
|
|
174 | (2) |
|
3.3 Frequency-Domain Specifications |
|
|
176 | (4) |
|
3.3.1 Gain Margin and Phase Margin |
|
|
178 | (1) |
|
3.3.2 Simple Oscillator Model in Frequency Domain |
|
|
179 | (1) |
|
|
180 | (4) |
|
|
183 | (1) |
|
|
184 | (35) |
|
|
185 | (1) |
|
|
185 | (10) |
|
3.5.2.1 Sensitivity in Digital Devices |
|
|
186 | (1) |
|
3.5.2.2 Sensitivity Error |
|
|
187 | (1) |
|
3.5.2.3 Sensitivity Considerations in Control |
|
|
187 | (8) |
|
|
195 | (6) |
|
|
195 | (5) |
|
3.6.1.1 Transmission Level of a Band-Pass Filter |
|
|
196 | (1) |
|
3.6.1.2 Effective Noise Bandwidth |
|
|
196 | (1) |
|
3.6.1.3 Half-Power (or 3 dB) Bandwidth |
|
|
196 | (1) |
|
3.6.1.4 Fourier Analysis Bandwidth |
|
|
197 | (1) |
|
3.6.1.5 Useful Frequency Range |
|
|
198 | (1) |
|
3.6.1.6 Instrument Bandwidth |
|
|
198 | (1) |
|
3.6.1.7 Control Bandwidth |
|
|
198 | (2) |
|
|
200 | (1) |
|
3.7 Aliasing Distortion Due to Signal Sampling |
|
|
201 | (8) |
|
|
202 | (1) |
|
3.7.2 Another Illustration of Aliasing |
|
|
202 | (1) |
|
3.7.3 Antialiasing Filter |
|
|
203 | (4) |
|
3.7.4 Bandwidth Design of a Control System |
|
|
207 | (2) |
|
3.7.4.1 Comment about Control Cycle Time |
|
|
208 | (1) |
|
3.8 Instrument Error Considerations |
|
|
209 | (2) |
|
3.8.1 Error Representation |
|
|
209 | (2) |
|
3.8.1.1 Instrument Accuracy and Measurement Accuracy |
|
|
210 | (1) |
|
3.8.1.2 Accuracy and Precision |
|
|
210 | (1) |
|
3.9 Error Propagation and Combination |
|
|
211 | (26) |
|
3.9.1 Application of Sensitivity in Error Combination |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
3.9.4 Equal Contributions from Individual Errors |
|
|
214 | (5) |
|
|
219 | (4) |
|
|
223 | (12) |
4 Estimation from Measurements |
|
|
|
235 | (1) |
|
4.1 Sensing and Estimation |
|
|
235 | (2) |
|
4.2 Least-Squares Estimation |
|
|
237 | (9) |
|
4.2.1 Least-Squares Point Estimate |
|
|
237 | (1) |
|
4.2.2 Randomness in Data and Estimate |
|
|
238 | (3) |
|
4.2.2.1 Model Randomness and Measurement Randomness |
|
|
239 | (2) |
|
4.2.3 Least-Squares Line Estimate |
|
|
241 | (2) |
|
4.2.4 Quality of Estimate |
|
|
243 | (3) |
|
4.3 Maximum Likelihood Estimation |
|
|
246 | (6) |
|
4.3.1 Analytical Basis of MLE |
|
|
247 | (1) |
|
4.3.2 Justification of MLE through Bayes' Theorem |
|
|
248 | (1) |
|
4.3.3 MLE with Normal Distribution |
|
|
248 | (2) |
|
4.3.4 Recursive Maximum Likelihood Estimation |
|
|
250 | (2) |
|
4.3.4.1 Recursive Gaussian Maximum Likelihood Estimation |
|
|
250 | (2) |
|
4.3.5 Discrete MLE Example |
|
|
252 | (1) |
|
4.4 Scalar Static Kalman Filter |
|
|
252 | (9) |
|
4.4.1 Concepts of Scalar Static Kalman Filter |
|
|
253 | (1) |
|
4.4.2 Use of Bayes' Formula |
|
|
254 | (2) |
|
4.4.3 Algorithm of Scalar Static Kalman Filter |
|
|
256 | (5) |
|
4.5 Linear Multivariable Dynamic Kalman Filter |
|
|
261 | (10) |
|
|
262 | (2) |
|
|
264 | (1) |
|
4.5.3 Controllability and Observability |
|
|
265 | (1) |
|
4.5.4 Discrete-Time State-Space Model |
|
|
266 | (1) |
|
4.5.5 Linear Kalman Filter Algorithm |
|
|
267 | (4) |
|
4.5.5.1 Initial Values of Recursion |
|
|
268 | (3) |
|
4.6 Extended Kalman Filter |
|
|
271 | (4) |
|
4.6.1 Extended Kalman Filter Algorithm |
|
|
271 | (4) |
|
4.7 Unscented Kalman Filter |
|
|
275 | (8) |
|
4.7.1 Unscented Transformation |
|
|
276 | (2) |
|
4.7.1.1 Generation of Sigma-Point Vectors and Weights |
|
|
276 | (2) |
|
4.7.1.2 Computation of Output Statistics |
|
|
278 | (1) |
|
4.7.2 Unscented Kalman Filter Algorithm |
|
|
278 | (5) |
|
|
283 | (5) |
|
|
288 | (9) |
5 Analog Sensors and Transducers |
|
|
|
297 | (1) |
|
5.1 Sensors and Transducers |
|
|
297 | (5) |
|
|
298 | (2) |
|
5.1.1.1 Measurand and Measurement |
|
|
298 | (1) |
|
5.1.1.2 Sensor and Transducer |
|
|
298 | (1) |
|
5.1.1.3 Analog and Digital Sensor-Transducer Devices |
|
|
299 | (1) |
|
5.1.1.4 Sensor Signal Conditioning |
|
|
299 | (1) |
|
5.1.1.5 Pure, Passive, and Active Devices |
|
|
300 | (1) |
|
5.1.2 Sensor Types and Selection |
|
|
300 | (2) |
|
5.1.2.1 Sensor Classification Based on the Measurand |
|
|
300 | (1) |
|
5.1.2.2 Sensor Classification Based on Sensor Technology |
|
|
301 | (1) |
|
|
301 | (1) |
|
5.2 Sensors for Electromechanical Applications |
|
|
302 | (4) |
|
|
302 | (1) |
|
5.2.1.1 Multipurpose Sensing Elements |
|
|
303 | (1) |
|
5.2.1.2 Motion Transducer Selection |
|
|
303 | (1) |
|
|
303 | (3) |
|
5.2.2.1 Force Sensors for Motion Measurement |
|
|
304 | (1) |
|
5.2.2.2 Force Sensor Location |
|
|
304 | (2) |
|
|
306 | (9) |
|
5.3.1 Rotatory Potentiometers |
|
|
307 | (3) |
|
5.3.1.1 Loading Nonlinearity |
|
|
308 | (2) |
|
5.3.2 Performance Considerations |
|
|
310 | (3) |
|
5.3.2.1 Potentiometer Ratings |
|
|
310 | (1) |
|
|
310 | (1) |
|
|
311 | (2) |
|
5.3.3 Optical Potentiometer |
|
|
313 | (2) |
|
5.3.3.1 Digital Potentiometer |
|
|
314 | (1) |
|
5.4 Variable-Inductance Transducers |
|
|
315 | (16) |
|
5.4.1 Inductance, Reactance, and Reluctance |
|
|
317 | (1) |
|
5.4.2 Linear-Variable Differential Transformer/Transducer |
|
|
318 | (7) |
|
5.4.2.1 Calibration and Compensation |
|
|
320 | (1) |
|
5.4.2.2 Phase Shift and Null Voltage |
|
|
320 | (2) |
|
5.4.2.3 Signal Conditioning |
|
|
322 | (3) |
|
5.4.2.4 Rotatory-Variable Differential Transformer/Transducer |
|
|
325 | (1) |
|
5.4.3 Mutual-Induction Proximity Sensor |
|
|
325 | (2) |
|
|
327 | (4) |
|
|
328 | (1) |
|
5.4.4.2 Resolver with Rotor Output |
|
|
329 | (1) |
|
5.4.4.3 Self-Induction Transducers |
|
|
330 | (1) |
|
5.5 Permanent-Magnet and Eddy Current Transducers |
|
|
331 | (10) |
|
|
331 | (6) |
|
5.5.1.1 Electronic Commutation |
|
|
332 | (1) |
|
5.5.1.2 Modeling of a DC Tachometer |
|
|
333 | (1) |
|
5.5.1.3 Design Considerations |
|
|
334 | (3) |
|
5.5.1.4 Loading Considerations |
|
|
337 | (1) |
|
|
337 | (2) |
|
5.5.2.1 Permanent-Magnet AC Tachometer |
|
|
338 | (1) |
|
5.5.2.2 AC Induction Tachometer |
|
|
338 | (1) |
|
5.5.2.3 Advantages and Disadvantages of AC Tachometers |
|
|
339 | (1) |
|
5.5.3 Eddy Current Transducers |
|
|
339 | (2) |
|
5.6 Variable-Capacitance Transducers |
|
|
341 | (8) |
|
5.6.1 Capacitive-Sensing Circuits |
|
|
342 | (3) |
|
5.6.1.1 Capacitance Bridge |
|
|
342 | (1) |
|
5.6.1.2 Potentiometer Circuit |
|
|
343 | (1) |
|
5.6.1.3 Charge Amplifier Circuit |
|
|
344 | (1) |
|
5.6.1.4 LC Oscillator Circuit |
|
|
345 | (1) |
|
5.6.2 Capacitive Displacement Sensor |
|
|
345 | (1) |
|
5.6.3 Capacitive Rotation and Angular Velocity Sensors |
|
|
346 | (1) |
|
5.6.4 Capacitive Liquid Level Sensor |
|
|
346 | (2) |
|
5.6.4.1 Permittivity of Dielectric Medium |
|
|
347 | (1) |
|
5.6.5 Applications of Capacitive Sensors |
|
|
348 | (1) |
|
5.6.5.1 Advantages and Disadvantages |
|
|
348 | (1) |
|
5.6.5.2 Applications of Capacitive Sensors |
|
|
348 | (1) |
|
5.7 Piezoelectric Sensors |
|
|
349 | (8) |
|
5.7.1 Charge Sensitivity and Voltage Sensitivity |
|
|
350 | (2) |
|
|
352 | (2) |
|
5.7.3 Piezoelectric Accelerometer |
|
|
354 | (3) |
|
5.7.3.1 Piezoelectric Accelerometer |
|
|
355 | (2) |
|
|
357 | (14) |
|
5.8.1 Equations for Strain-Gauge Measurements |
|
|
357 | (9) |
|
5.8.1.1 Bridge Sensitivity |
|
|
360 | (1) |
|
|
361 | (1) |
|
5.8.1.3 Calibration Constant |
|
|
362 | (3) |
|
|
365 | (1) |
|
5.8.1.5 Accuracy Considerations |
|
|
365 | (1) |
|
5.8.2 Semiconductor Strain Gauges |
|
|
366 | (3) |
|
5.8.3 Automatic (Self-)Compensation for Temperature |
|
|
369 | (2) |
|
|
371 | (21) |
|
5.9.1 Strain-Gauge Torque Sensors |
|
|
372 | (2) |
|
5.9.2 Design Considerations |
|
|
374 | (9) |
|
5.9.2.1 Strain Capacity of the Gauge |
|
|
377 | (1) |
|
5.9.2.2 Strain-Gauge Nonlinearity Limit |
|
|
377 | (1) |
|
5.9.2.3 Sensitivity Requirement |
|
|
378 | (1) |
|
5.9.2.4 Stiffness Requirement |
|
|
378 | (5) |
|
5.9.3 Deflection Torque Sensors |
|
|
383 | (3) |
|
5.9.3.1 Direct-Deflection Torque Sensor |
|
|
384 | (1) |
|
5.9.3.2 Variable-Reluctance Torque Sensor |
|
|
384 | (2) |
|
5.9.3.3 Magnetostriction Torque Sensor |
|
|
386 | (1) |
|
5.9.4 Reaction Torque Sensors |
|
|
386 | (2) |
|
5.9.5 Motor Current Torque Sensors |
|
|
388 | (2) |
|
|
388 | (1) |
|
|
388 | (2) |
|
|
390 | (2) |
|
|
392 | (1) |
|
|
392 | (1) |
|
5.10.2 Coriolis Force Devices |
|
|
392 | (1) |
|
5.11 Thermo-Fluid Sensors |
|
|
393 | (7) |
|
|
394 | (1) |
|
|
395 | (2) |
|
5.11.3 Temperature Sensors |
|
|
397 | (30) |
|
|
397 | (1) |
|
5.11.3.2 Resistance Temperature Detector |
|
|
398 | (1) |
|
|
399 | (1) |
|
5.11.3.4 Bimetal Strip Thermometer |
|
|
399 | (1) |
|
5.11.3.5 Resonant Temperature Sensors |
|
|
399 | (1) |
|
|
400 | (7) |
|
|
407 | (20) |
6 Digital and Innovative Sensing |
|
|
|
427 | (1) |
|
6.1 Innovative Sensor Technologies |
|
|
427 | (3) |
|
6.1.1 Analog versus Digital Sensing |
|
|
428 | (1) |
|
6.1.1.1 Analog Sensing Method: Potentiometer with 3-Bit ADC |
|
|
429 | (1) |
|
6.1.1.2 Digital Sensing Method: Eight Limit Switches |
|
|
429 | (1) |
|
6.1.2 Advantages of Digital Transducers |
|
|
429 | (1) |
|
|
430 | (4) |
|
|
431 | (3) |
|
6.2.1.1 Incremental Encoder |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
432 | (1) |
|
6.2.1.4 Sliding Contact Encoder |
|
|
433 | (1) |
|
|
433 | (1) |
|
6.2.1.6 Proximity Sensor Encoder |
|
|
433 | (1) |
|
6.2.1.7 Direction Sensing |
|
|
434 | (1) |
|
6.3 Incremental Optical Encoder |
|
|
434 | (5) |
|
6.3.1 Direction of Rotation |
|
|
435 | (2) |
|
6.3.2 Encoder Hardware Features |
|
|
437 | (1) |
|
6.3.2.1 Signal Conditioning |
|
|
438 | (1) |
|
|
438 | (1) |
|
6.4 Motion Sensing by Encoder |
|
|
439 | (8) |
|
6.4.1 Displacement Measurement |
|
|
439 | (4) |
|
6.4.1.1 Digital Resolution |
|
|
440 | (1) |
|
6.4.1.2 Physical Resolution |
|
|
440 | (2) |
|
|
442 | (1) |
|
|
443 | (1) |
|
6.4.2 Velocity Measurement |
|
|
443 | (4) |
|
6.4.2.1 Velocity Resolution |
|
|
444 | (2) |
|
6.4.2.2 Velocity with Step-Up Gearing |
|
|
446 | (1) |
|
6.4.2.3 Velocity Resolution with Step-Up Gearing |
|
|
447 | (1) |
|
6.5 Encoder Data Acquisition and Processing |
|
|
447 | (4) |
|
6.5.1 Data Acquisition Using a Microcontroller |
|
|
447 | (2) |
|
6.5.2 Data Acquisition Using a Desktop Computer |
|
|
449 | (2) |
|
6.6 Absolute Optical Encoders |
|
|
451 | (3) |
|
|
451 | (2) |
|
6.6.1.1 Code Conversion Logic |
|
|
452 | (1) |
|
|
453 | (1) |
|
6.6.3 Velocity Measurement |
|
|
454 | (1) |
|
6.6.4 Advantages and Drawbacks |
|
|
454 | (1) |
|
|
454 | (5) |
|
|
455 | (4) |
|
6.8 Miscellaneous Digital Transducers |
|
|
459 | (8) |
|
|
459 | (3) |
|
|
462 | (1) |
|
6.8.3 Digital Tachometers |
|
|
463 | (1) |
|
6.8.4 Moire Fringe Displacement Sensors |
|
|
464 | (3) |
|
6.9 Optical Sensors, Lasers, and Cameras |
|
|
467 | (11) |
|
6.9.1 Fiber-Optic Position Sensor |
|
|
467 | (1) |
|
6.9.2 Laser Interferometer |
|
|
468 | (1) |
|
6.9.3 Fiber-Optic Gyroscope |
|
|
469 | (1) |
|
6.9.4 Laser Doppler Interferometer |
|
|
470 | (1) |
|
|
471 | (4) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (1) |
|
6.9.5.6 Charge-Coupled Device |
|
|
474 | (1) |
|
|
475 | (3) |
|
6.9.6.1 Image Processing and Computer Vision |
|
|
475 | (1) |
|
6.9.6.2 Image-Based Sensory System |
|
|
475 | (1) |
|
|
476 | (1) |
|
6.9.6.4 Image Frame Acquisition |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
477 | (1) |
|
6.9.6.7 Some Applications |
|
|
477 | (1) |
|
6.10 Miscellaneous Sensor Technologies |
|
|
478 | (7) |
|
6.10.1 Hall-Effect Sensor |
|
|
478 | (2) |
|
6.10.1.1 Hall-Effect Motion Sensors |
|
|
478 | (1) |
|
|
479 | (1) |
|
6.10.2 Ultrasonic Sensors |
|
|
480 | (1) |
|
6.10.3 Magnetostrictive Displacement Sensor |
|
|
481 | (1) |
|
6.10.4 Impedance Sensing and Control |
|
|
481 | (4) |
|
|
485 | (7) |
|
6.11.1 Tactile Sensor Requirements |
|
|
485 | (1) |
|
|
486 | (1) |
|
6.11.2 Construction and Operation of Tactile Sensors |
|
|
486 | (2) |
|
6.11.3 Optical Tactile Sensors |
|
|
488 | (1) |
|
6.11.4 A Strain-Gauge Tactile Sensor |
|
|
489 | (2) |
|
6.11.5 Other Types of Tactile Sensors |
|
|
491 | (1) |
|
|
492 | (5) |
|
6.12.1 Advantages of MEMS |
|
|
492 | (1) |
|
6.12.1.1 Special Considerations |
|
|
492 | (1) |
|
6.12.1.2 Rating Parameters |
|
|
493 | (1) |
|
6.12.2 MEMS Sensor Modeling |
|
|
493 | (1) |
|
6.12.2.1 Energy Conversion Mechanism |
|
|
493 | (1) |
|
6.12.3 Applications of MEMS |
|
|
494 | (1) |
|
6.12.4 MEMS Materials and Fabrication |
|
|
494 | (2) |
|
6.12.4.1 IC Fabrication Process |
|
|
495 | (1) |
|
6.12.4.2 MEMS Fabrication Processes |
|
|
495 | (1) |
|
6.12.5 MEMS Sensor Examples |
|
|
496 | (1) |
|
|
497 | (11) |
|
6.13.1 Nature and Types of Fusion |
|
|
498 | (1) |
|
6.13.1.1 Fusion Architectures |
|
|
498 | (1) |
|
6.13.2 Sensor Fusion Applications |
|
|
499 | (2) |
|
6.13.2.1 Enabling Technologies |
|
|
501 | (1) |
|
6.13.3 Approaches of Sensor Fusion |
|
|
501 | (7) |
|
6.13.3.1 Bayesian Approach to Sensor Fusion |
|
|
501 | (2) |
|
6.13.3.2 Continuous Gaussian Problem |
|
|
503 | (3) |
|
6.13.3.3 Sensor Fusion Using Kalman Filter |
|
|
506 | (1) |
|
6.13.3.4 Sensor Fusion Using Neural Networks |
|
|
506 | (2) |
|
6.14 Wireless Sensor Networks |
|
|
508 | (12) |
|
|
509 | (3) |
|
|
509 | (1) |
|
|
510 | (1) |
|
6.14.1.3 Operating System of WSN |
|
|
510 | (2) |
|
6.14.2 Advantages and Issues of WSNs |
|
|
512 | (2) |
|
6.14.2.1 Key Issues of WSN |
|
|
512 | (1) |
|
6.14.2.2 Engineering Challenges |
|
|
513 | (1) |
|
|
513 | (1) |
|
6.14.2.4 Power Management |
|
|
513 | (1) |
|
6.14.3 Communication Issues |
|
|
514 | (2) |
|
6.14.3.1 Communication Protocol of WSN |
|
|
514 | (1) |
|
6.14.3.2 Routing of Communication in WSN |
|
|
515 | (1) |
|
|
515 | (1) |
|
6.14.3.4 Other Software of WSN |
|
|
516 | (1) |
|
|
516 | (3) |
|
6.14.4.1 Methods of Localization |
|
|
516 | (1) |
|
6.14.4.2 Localization by Multilateration |
|
|
516 | (2) |
|
6.14.4.3 Distance Measurement Using Radio Signal Strength |
|
|
518 | (1) |
|
|
519 | (23) |
|
6.14.5.1 Medical and Assisted Living |
|
|
520 | (1) |
|
6.14.5.2 Structural Health Monitoring |
|
|
520 | (1) |
|
|
520 | (9) |
|
|
529 | (11) |
|
|
540 | (1) |
7 Mechanical Transmission Components |
|
|
|
541 | (1) |
|
7.1 Actuator-Load Matching |
|
|
541 | (1) |
|
7.2 Mechanical Components |
|
|
542 | (3) |
|
7.2.1 Transmission Components |
|
|
543 | (2) |
|
|
545 | (5) |
|
7.3.1 Positioning (x-y) Tables |
|
|
548 | (2) |
|
7.3.2 Analogy with Gear System |
|
|
550 | (1) |
|
|
550 | (6) |
|
7.4.1 Pin-Slot Transmission |
|
|
552 | (1) |
|
7.4.2 Other Designs of Harmonic Drive |
|
|
552 | (2) |
|
|
554 | (2) |
|
7.5 Continuously Variable Transmission |
|
|
556 | (5) |
|
7.5.1 Principle of Operation of an Innovative CVT |
|
|
556 | (2) |
|
|
558 | (2) |
|
|
560 | (1) |
|
7.6 Load Matching for Actuators |
|
|
561 | (6) |
|
7.6.1 Inertial Matching for Maximum Acceleration |
|
|
562 | (1) |
|
7.6.2 Actuator and Load Modeling |
|
|
563 | (4) |
|
|
567 | (1) |
|
|
568 | (7) |
8 Stepper Motors |
|
|
|
575 | (1) |
|
8.1 Principle of Operation |
|
|
575 | (7) |
|
|
575 | (1) |
|
|
576 | (1) |
|
8.1.3 Permanent-Magnet Stepper Motor |
|
|
576 | (4) |
|
8.1.4 Variable-Reluctance Stepper Motor |
|
|
580 | (1) |
|
|
580 | (2) |
|
8.1.5.1 Advantages and Disadvantages |
|
|
581 | (1) |
|
8.2 Stepper Motor Classification |
|
|
582 | (15) |
|
8.2.1 Single-Stack Stepper Motors |
|
|
583 | (4) |
|
8.2.2 Toothed-Pole Construction |
|
|
587 | (3) |
|
8.2.2.1 Advantages of Toothed Construction |
|
|
587 | (1) |
|
8.2.2.2 Governing Equations |
|
|
588 | (2) |
|
8.2.3 Another Toothed Construction |
|
|
590 | (2) |
|
|
592 | (1) |
|
8.2.4.1 Advantages and Disadvantages |
|
|
593 | (1) |
|
8.2.5 Multiple-Stack Stepper Motors |
|
|
593 | (2) |
|
8.2.5.1 Equal-Pitch Multiple-Stack Stepper |
|
|
594 | (1) |
|
8.2.5.2 Unequal-Pitch Multiple-Stack Stepper |
|
|
595 | (1) |
|
8.2.6 Hybrid Stepper Motor |
|
|
595 | (2) |
|
8.3 Driver and Controller |
|
|
597 | (5) |
|
|
599 | (1) |
|
8.3.2 Motor Time Constant and Torque Degradation |
|
|
600 | (2) |
|
8.4 Torque Motion Characteristics |
|
|
602 | (6) |
|
8.4.1 Single-Pulse Response |
|
|
602 | (3) |
|
8.4.2 Response to a Pulse Sequence |
|
|
605 | (1) |
|
|
605 | (1) |
|
|
606 | (1) |
|
|
607 | (1) |
|
8.5 Static Position Error |
|
|
608 | (1) |
|
8.6 Damping of Stepper Motors |
|
|
609 | (7) |
|
8.6.1 Approaches of Damping |
|
|
610 | (6) |
|
8.6.1.1 Mechanical Damping |
|
|
610 | (3) |
|
8.6.1.2 Electronic Damping |
|
|
613 | (2) |
|
8.6.1.3 Multiple-Phase Energization |
|
|
615 | (1) |
|
|
616 | (3) |
|
|
616 | (1) |
|
|
617 | (2) |
|
8.7.2.1 Torque Equation for PM and HB Motors |
|
|
619 | (1) |
|
8.7.2.2 Torque Equation for VR Motors |
|
|
619 | (1) |
|
8.8 Control of Stepper Motors |
|
|
619 | (5) |
|
|
619 | (2) |
|
|
621 | (2) |
|
8.8.2.1 Feedback Encoder-Driven Stepper Motor |
|
|
622 | (1) |
|
8.8.3 Torque Control through Switching |
|
|
623 | (1) |
|
8.8.4 Model-Based Feedback Control |
|
|
624 | (1) |
|
8.9 Stepper Motor Selection and Applications |
|
|
624 | (10) |
|
8.9.1 Torque-Speed Characteristics and Terminology |
|
|
625 | (2) |
|
8.9.1.1 Residual Torque and Detent Torque |
|
|
626 | (1) |
|
|
626 | (1) |
|
8.9.1.3 Pull-Out Curve or Slew Curve |
|
|
626 | (1) |
|
8.9.1.4 Pull-In Curve or Start-Stop Curve |
|
|
626 | (1) |
|
8.9.2 Stepper Motor Selection |
|
|
627 | (6) |
|
8.9.2.1 Parameters of Motor Selection |
|
|
628 | (5) |
|
8.9.3 Stepper Motor Applications and Advantages |
|
|
633 | (20) |
|
|
633 | (1) |
|
|
634 | (1) |
|
|
634 | (2) |
|
|
636 | (17) |
9 Continuous-Drive Actuators |
|
|
|
653 | (1) |
|
|
653 | (1) |
|
9.1.1 Actuator Classification |
|
|
653 | (1) |
|
9.1.2 Actuator Requirements and Applications |
|
|
654 | (1) |
|
|
654 | (10) |
|
9.2.1 Principle of Operation |
|
|
655 | (1) |
|
|
656 | (1) |
|
|
657 | (1) |
|
9.2.4 Static Torque Characteristics |
|
|
657 | (2) |
|
9.2.5 Brushless DC Motors |
|
|
659 | (4) |
|
9.2.5.1 Disadvantages of Slip-Rings and Brushes |
|
|
659 | (1) |
|
9.2.5.2 Permanent-Magnet Motors |
|
|
660 | (1) |
|
9.2.5.3 Brushless Commutation |
|
|
660 | (1) |
|
9.2.5.4 Constant-Speed Operation |
|
|
661 | (1) |
|
9.2.5.5 Transient Operation |
|
|
661 | (1) |
|
9.2.5.6 Advantages and Applications |
|
|
662 | (1) |
|
|
663 | (1) |
|
9.2.6.1 Direct-Drive Operation |
|
|
663 | (1) |
|
9.2.6.2 Brushless Torque Motors |
|
|
663 | (1) |
|
|
664 | (1) |
|
|
664 | (13) |
|
|
666 | (1) |
|
9.3.2 Steady-State Characteristics |
|
|
666 | (1) |
|
|
667 | (1) |
|
|
668 | (1) |
|
9.3.5 Combined Excitation of Motor Windings |
|
|
669 | (1) |
|
|
670 | (3) |
|
|
673 | (4) |
|
9.3.7.1 Electrical Damping Constant |
|
|
673 | (1) |
|
9.3.7.2 Linearized Experimental Model |
|
|
674 | (3) |
|
|
677 | (15) |
|
9.4.1 Armature Control and Field Control |
|
|
677 | (1) |
|
|
678 | (1) |
|
9.4.2.1 Need for Feedback |
|
|
678 | (1) |
|
9.4.2.2 Servomotor Control System |
|
|
678 | (1) |
|
|
679 | (8) |
|
9.4.3.1 Motor Time Constants |
|
|
680 | (2) |
|
9.4.3.2 Motor Parameter Measurement |
|
|
682 | (5) |
|
|
687 | (1) |
|
9.4.5 Feedback Control of DC Motors |
|
|
688 | (3) |
|
9.4.5.1 Velocity Feedback Control |
|
|
688 | (1) |
|
9.4.5.2 Position Plus Velocity Feedback Control |
|
|
688 | (1) |
|
9.4.5.3 Position Feedback with PID Control |
|
|
689 | (2) |
|
9.4.6 Phase-Locked Control |
|
|
691 | (1) |
|
9.4.6.1 Phase Difference Sensing |
|
|
691 | (1) |
|
9.5 Motor Driver and Feedback Control |
|
|
692 | (4) |
|
|
693 | (1) |
|
|
693 | (1) |
|
9.5.3 Pulse-Width Modulation |
|
|
694 | (2) |
|
|
695 | (1) |
|
|
696 | (5) |
|
|
696 | (1) |
|
9.6.2 Motor Data and Specifications |
|
|
696 | (1) |
|
9.6.3 Selection Considerations |
|
|
697 | (2) |
|
9.6.4 Motor Sizing Procedure |
|
|
699 | (2) |
|
|
699 | (1) |
|
9.6.4.2 Drive Amplifier Selection |
|
|
700 | (1) |
|
|
701 | (9) |
|
|
702 | (1) |
|
|
702 | (1) |
|
9.7.3 Rotating Magnetic Field |
|
|
702 | (3) |
|
9.7.4 Induction Motor Characteristics |
|
|
705 | (2) |
|
9.7.5 Torque-Speed Relationship |
|
|
707 | (3) |
|
9.8 Induction Motor Control |
|
|
710 | (14) |
|
9.8.1 Motor Driver and Controller |
|
|
711 | (1) |
|
|
712 | (1) |
|
9.8.3 Excitation Frequency Control |
|
|
712 | (2) |
|
|
714 | (2) |
|
9.8.5 Voltage/Frequency Control |
|
|
716 | (1) |
|
9.8.6 Field Feedback Control (Flux Vector Drive) |
|
|
716 | (1) |
|
9.8.7 Transfer-Function Model for an Induction Motor |
|
|
717 | (5) |
|
9.8.8 Induction Torque Motors |
|
|
722 | (1) |
|
9.8.9 Single-Phase AC Motors |
|
|
722 | (2) |
|
|
724 | (1) |
|
9.9.1 Operating Principle |
|
|
724 | (1) |
|
9.9.2 Starting a Synchronous Motor |
|
|
725 | (1) |
|
9.9.3 Control of a Synchronous Motor |
|
|
725 | (1) |
|
|
725 | (3) |
|
|
726 | (1) |
|
|
727 | (1) |
|
|
728 | (13) |
|
9.11.1 Advantages of Hydraulic Actuators |
|
|
728 | (1) |
|
|
729 | (1) |
|
|
729 | (1) |
|
9.11.4 Components of a Hydraulic Control System |
|
|
729 | (2) |
|
9.11.5 Hydraulic Pumps and Motors |
|
|
731 | (2) |
|
|
733 | (5) |
|
|
734 | (2) |
|
9.11.6.2 Steady-State Valve Characteristics |
|
|
736 | (2) |
|
9.11.7 Hydraulic Primary Actuators |
|
|
738 | (2) |
|
|
740 | (1) |
|
9.12 Hydraulic Control Systems |
|
|
741 | (13) |
|
9.12.1 Need for Feedback Control |
|
|
747 | (4) |
|
9.12.1.1 Three-Term Control |
|
|
748 | (3) |
|
9.12.1.2 Advanced Control |
|
|
751 | (1) |
|
9.12.2 Constant-Flow Systems |
|
|
751 | (1) |
|
9.12.3 Pump-Controlled Hydraulic Actuators |
|
|
752 | (1) |
|
9.12.4 Hydraulic Accumulators |
|
|
752 | (1) |
|
9.12.5 Hydraulic Circuits |
|
|
753 | (1) |
|
9.13 Pneumatic Control Systems |
|
|
754 | (3) |
|
|
754 | (2) |
|
9.13.2 Advantages and Disadvantages of Multiple Stages |
|
|
756 | (1) |
|
|
757 | (5) |
|
9.14.1 Fluidic Components |
|
|
758 | (2) |
|
9.14.1.1 Logic Components |
|
|
758 | (1) |
|
9.14.1.2 Fluidic Motion Sensors |
|
|
759 | (1) |
|
9.14.1.3 Fluidic Amplifiers |
|
|
760 | (1) |
|
9.14.2 Fluidic Control Systems |
|
|
760 | (1) |
|
9.14.2.1 Interfacing Considerations |
|
|
761 | (1) |
|
9.14.2.2 Modular Laminated Construction |
|
|
761 | (1) |
|
9.14.3 Applications of Fluidics |
|
|
761 | (1) |
|
|
762 | (3) |
|
|
765 | (14) |
Appendix A: Probability and Statistics |
|
779 | (10) |
Appendix B: Reliability Considerations for Multicomponent Devices |
|
789 | (8) |
Appendix C: Answers to Numerical Problems |
|
797 | (4) |
Index |
|
801 | |