Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sensors and Actuators: Engineering System Instrumentation, Second Edition

(University of British Columbia, Vancouver, Canada)
  • Formāts: 847 pages
  • Izdošanas datums: 30-Jul-2015
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466506824
  • Formāts - PDF+DRM
  • Cena: 206,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 847 pages
  • Izdošanas datums: 30-Jul-2015
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466506824

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An engineering system contains multiple components that interconnect to perform a specific task. Starting from basic fundamentals through to advanced applications, Sensors and Actuators: Engineering System Instrumentation, Second Edition thoroughly explains the inner workings of an engineering system. The text first provides introductory materialpractical procedures and applications in the beginningand then methodically integrates more advanced techniques, theory, and concepts throughout the book. Emphasizing sensors, transducers, and actuators, the author discusses important aspects of component matching and interconnection, interface between the connected components, signal modification, and signal conditioning/modification. He also addresses functions, physical principles, operation and interaction, and the proper selection and interfacing of these components for various engineering/control applications.

This second edition provides a thorough revision of the first and includes new worked examples, new applications, and thoroughly updated as well as entirely new material. In addition, it provides increased coverage of sensor systems technologies and updated coverage of computer tools, including MATLAB®, Simulink, and LabView.

Whats New in the Second Edition:











A new chapter on estimation from measurements, which includes various practical procedures and applications of estimation through sensed data New material on microelectromechanical systems (MEMS) New material on multisensor data fusion New material on networked sensing and localization Many new problems and worked examples Chapter highlights and summary sheets, for easy reference and recollection

Sensors and Actuators: Engineering System Instrumentation, Second Edition provides users from a variety of engineering backgrounds with a complete overview of engineering system components for instrumentation. It presents current techniques, advanced theory and concepts, and addresses relevant design issues, component selection, and practical applications.

Recenzijas

" Professor de Silva has provided us with yet another excellent engineering undergraduate textbook. The content is uniquely both broad and focused providing the opportunity to explore a wide range of different aspects of engineering instrumentation and applications in detail. However, more impressive still is the exceptional presentation clarity of the material which covers the full range of engineering interests from analytical fundamentals, modeling approaches, component selection methods and design techniques. Included are extensive examples and case studies highlighting the practical application of basic concepts, analysis tools and design strategies." Chris K Mechefske, Department of Mechanical and Materials Engineering, Queens University, Kingston, Canada

"This book is essential in the area of sensors and actuators as it provides comprehensive information for students at undergraduate and graduate levels and also researchers, scientists and engineers." Farbod Khoshnoud, Brunel University London

"I have taught the instrumentation course in the Mechanical Engineering Department at my university for ten consecutive years. I switched the textbook for the course to first edition of this book when it first became available, because I and my faculty colleagues felt it was crucial that our instrumentation course cover "the whole picture" of instrumentation, including actuators and impedance matching and signal conditioning issues. I have always felt that de Silvas book was the best available in that regard. And I look forward, now, to working, likewise, with this, the second edition of the book. Thank you!" Martin C. Berg, Associate Professor, Department of Mechanical Engineering, University of Washington

"This book provides an excellent introduction for bachelor students into the design of complex systems containing multiple sensors and actuators. The illustrative examples and problems help students to quickly grasp the fundamental concepts and to see the trade-offs in the system design process. The book offers an excellent basis for designing a course on sensors and actuators." Sander Stuijk, Eindhoven University of Technology

"In addition to providing circuits and examples of sensors and actuators, this book develops entire system awareness, describing methods commonly used in industry for integrating components to function as a complete system. This type of knowledge is critical in todays highly instrumented metric-centric world." IEEE Electrical Insulation, January/February 2017 " Professor de Silva has provided us with yet another excellent engineering undergraduate textbook. The content is uniquely both broad and focused providing the opportunity to explore a wide range of different aspects of engineering instrumentation and applications in detail. However, more impressive still is the exceptional presentation clarity of the material which covers the full range of engineering interests from analytical fundamentals, modeling approaches, component selection methods, and design techniques. Included are extensive examples and case studies highlighting the practical application of basic concepts, analysis tools, and design strategies." Chris K. Mechefske, Department of Mechanical and Materials Engineering, Queens University, Kingston, Canada

"This book is essential in the area of sensors and actuators as it provides comprehensive information for students at undergraduate and graduate levels and also researchers, scientists, and engineers." Farbod Khoshnoud, Brunel University London

"I have taught the instrumentation course in the Mechanical Engineering Department at my university for ten consecutive years. I switched the textbook for the course to first edition of this book when it first became available, because I and my faculty colleagues felt it was crucial that our instrumentation course cover the whole picture of instrumentation, including actuators and impedance matching and signal conditioning issues. I have always felt that de Silvas book was the best available in that regard. And I look forward now to working, likewise, with this, the second edition of the book. Thank you!" Martin C. Berg, Associate Professor, Department of Mechanical Engineering, University of Washington

"This book provides an excellent introduction for bachelor students into the design of complex systems containing multiple sensors and actuators. The illustrative examples and problems help students to quickly grasp the fundamental concepts and to see the trade-offs in the system design process. The book offers an excellent basis for designing a course on sensors and actuators." Sander Stuijk, Eindhoven University of Technology

"In addition to providing circuits and examples of sensors and actuators, this book develops entire system awareness, describing methods commonly used in industry for integrating components to function as a complete system. This type of knowledge is critical in todays highly instrumented metric-centric world." IEEE Electrical Insulation, January/February 2017

Preface xix
Units and Conversions (Approximate) xxiii
Acknowledgments xxv
Author xxvii
1 Instrumentation of an Engineering System
Chapter Highlights
1(1)
1.1 Role of Sensors and Actuators
1(3)
1.1.1 Importance of Estimation in Sensing
3(1)
1.1.2 Innovative Sensor Technologies
4(1)
1.2 Application Scenarios
4(2)
1.3 Human Sensory System
6(1)
1.4 Mechatronic Engineering
7(2)
1.4.1 Mechatronic Approach to Instrumentation
8(1)
1.4.2 Bottlenecks for Mechatronic Instrumentation
8(1)
1.5 Control System Architectures
9(9)
1.5.1 Feedback and Feedforward Control
11(2)
1.5.2 Digital Control
13(1)
1.5.3 Programmable Logic Controllers
14(2)
1.5.3.1 PLC Hardware
16(1)
1.5.4 Distributed Control
16(1)
1.5.5 Hierarchical Control
17(1)
1.6 Instrumentation Process
18(9)
1.6.1 Instrumentation Steps
19(1)
1.6.2 Application Examples
20(15)
1.6.2.1 Networked Application
20(2)
1.6.2.2 Telemedicine System
22(3)
1.6.2.3 Homecare Robotic System
25(1)
1.6.2.4 Water Quality Monitoring
26(1)
1.7 Organization of the Book
27(2)
Summary Sheet
29(2)
Problems
31(4)
2 Component Interconnection and Signal Conditioning
Chapter Highlights
35(1)
2.1 Introduction
35(3)
2.1.1 Component Interconnection
35(2)
2.1.2 Signal Modification and Conditioning
37(1)
2.1.3
Chapter Overview
37(1)
2.2 Impedance
38(1)
2.2.1 Definition of Impedance
38(1)
2.2.2 Importance of Impedance Matching in Component Interconnection
38(1)
2.3 Impedance Matching Methods
39(19)
2.3.1 Maximum Power Transfer
40(2)
2.3.2 Power Transfer at Maximum Efficiency
42(1)
2.3.3 Reflection Prevention in Signal Transmission
42(2)
2.3.4 Loading Reduction
44(4)
2.3.4.1 Cascade Connection of Devices
44(4)
2.3.4.2 Impedance Matching for Loading Reduction
48(1)
2.3.5 Impedance Matching in Mechanical Systems
48(10)
2.3.5.1 Vibration Isolation
48(7)
2.3.5.2 Mechanical Transmission
55(3)
2.4 Amplifiers
58(15)
2.4.1 Operational Amplifier
59(2)
2.4.1.1 Differential Input Voltage
60(1)
2.4.2 Amplifier Performance Ratings
61(4)
2.4.2.1 Common-Mode Rejection Ratio
63(2)
2.4.2.2 Use of Feedback in Op-Amps
65(1)
2.4.3 Voltage, Current, and Power Amplifiers
65(8)
2.4.4 Instrumentation Amplifiers
68(4)
2.4.4.1 Differential Amplifier
69(1)
2.4.4.2 Instrumentation Amplifier
70(1)
2.4.4.3 Common Mode
70(1)
2.4.4.4 Charge Amplifier
71(1)
2.4.4.5 AC-Coupled Amplifiers
72(1)
2.4.5 Noise and Ground Loops
72(4)
2.4.5.1 Ground-Loop Noise
72(1)
2.5 Analog Filters
73(20)
2.5.1 Passive Filters and Active Filters
76(1)
2.5.1.1 Number of Poles
76(1)
2.5.2 Low-Pass Filters
76(8)
2.5.2.1 Low-Pass Butterworth Filter
79(5)
2.5.3 High-Pass Filters
84(2)
2.5.4 Band-Pass Filters
86(4)
2.5.4.1 Resonance-Type Band-Pass Filters
87(3)
2.5.5 Band-Reject Filters
90(1)
2.5.6 Digital Filters
91(2)
2.5.6.1 Software Implementation and Hardware Implementation
93(1)
2.6 Modulators and Demodulators
93(11)
2.6.1 Amplitude Modulation
96(2)
2.6.1.1 Analog, Discrete, and Digital AM
96(1)
2.6.1.2 Modulation Theorem
96(1)
2.6.1.3 Side Frequencies and Sidebands
97(1)
2.6.2 Application of Amplitude Modulation
98(2)
2.6.2.1 Fault Detection and Diagnosis
100(1)
2.6.3 Demodulation
100(4)
2.6.3.1 Advantages and Disadvantages of AM
101(1)
2.6.3.2 Double Sideband Suppressed Carrier
102(1)
2.6.3.3 Analog AM Hardware
102(2)
2.7 Data Acquisition Hardware
104(18)
2.7.1 Digital-to-Analog Converter
108(5)
2.7.1.1 DAC Operation
109(4)
2.7.2 Analog-to-Digital Converter
113(5)
2.7.2.1 Successive Approximation ADC
114(1)
2.7.2.2 Delta—Sigma ADC
115(1)
2.7.2.3 ADC Performance Characteristics
116(2)
2.7.3 Sample-and-Hold Hardware
118(1)
2.7.4 Multiplexer
119(3)
2.7.4.1 Analog Multiplexers
120(1)
2.7.4.2 Digital Multiplexers
121(1)
2.8 Bridge Circuits
122(9)
2.8.1 Wheatstone Bridge
123(2)
2.8.2 Constant-Current Bridge
125(2)
2.8.3 Hardware Linearization of Bridge Outputs
127(1)
2.8.3.1 Bridge Amplifiers
127(1)
2.8.4 Half-Bridge Circuits
128(1)
2.8.5 Impedance Bridges
129(2)
2.8.5.1 Owen Bridge
130(1)
2.8.5.2 Wien-Bridge Oscillator
131(1)
2.9 Linearizing Devices
131(8)
2.9.1 Nature of Nonlinearities
131(4)
2.9.1.1 Linearization Methods
132(1)
2.9.1.2 Linearization by Software
133(1)
2.9.1.3 Linearization by Logic Hardware
134(1)
2.9.2 Analog Linearizing Hardware
135(4)
2.9.2.1 Offsetting Circuitry
136(1)
2.9.2.2 Proportional-Output Hardware
137(1)
2.9.2.3 Curve-Shaping Hardware
138(1)
2.10 Miscellaneous Signal-Modification Hardware
139(8)
2.10.1 Phase Shifters
139(3)
2.10.1.1 Applications
140(1)
2.10.1.2 Analog Phase Shift Hardware
140(1)
2.10.1.3 Digital Phase Shifter
141(1)
2.10.2 Voltage-to-Frequency Converters
142(2)
2.10.2.1 Applications
143(1)
2.10.2.2 VFC Chips
143(1)
2.10.3 Frequency-to-Voltage Converter
144(1)
2.10.4 Voltage-to-Current Converter
145(1)
2.10.5 Peak-Hold Circuits
146(1)
Summary Sheet
147(4)
Problems
151(16)
3 Performance Specification and Instrument Rating Parameters
Chapter Highlights
167(1)
3.1 Performance Specification
167(5)
3.1.1 Parameters for Performance Specification
168(2)
3.1.1.1 Performance Specification in Design and Control
169(1)
3.1.1.2 Perfect Measurement Device
169(1)
3.1.2 Dynamic Reference Models
170(2)
3.1.2.1 First-Order Model
170(2)
3.1.2.2 Simple Oscillator Model
172(1)
3.2 Time-Domain Specifications
172(4)
3.2.1 Stability and Speed of Response
174(2)
3.3 Frequency-Domain Specifications
176(4)
3.3.1 Gain Margin and Phase Margin
178(1)
3.3.2 Simple Oscillator Model in Frequency Domain
179(1)
3.4 Linearity
180(4)
3.4.1 Linearization
183(1)
3.5 Instrument Ratings
184(35)
3.5.1 Rating Parameters
185(1)
3.5.2 Sensitivity
185(10)
3.5.2.1 Sensitivity in Digital Devices
186(1)
3.5.2.2 Sensitivity Error
187(1)
3.5.2.3 Sensitivity Considerations in Control
187(8)
3.6 Bandwidth Analysis
195(6)
3.6.1 Bandwidth
195(5)
3.6.1.1 Transmission Level of a Band-Pass Filter
196(1)
3.6.1.2 Effective Noise Bandwidth
196(1)
3.6.1.3 Half-Power (or 3 dB) Bandwidth
196(1)
3.6.1.4 Fourier Analysis Bandwidth
197(1)
3.6.1.5 Useful Frequency Range
198(1)
3.6.1.6 Instrument Bandwidth
198(1)
3.6.1.7 Control Bandwidth
198(2)
3.6.2 Static Gain
200(1)
3.7 Aliasing Distortion Due to Signal Sampling
201(8)
3.7.1 Sampling Theorem
202(1)
3.7.2 Another Illustration of Aliasing
202(1)
3.7.3 Antialiasing Filter
203(4)
3.7.4 Bandwidth Design of a Control System
207(2)
3.7.4.1 Comment about Control Cycle Time
208(1)
3.8 Instrument Error Considerations
209(2)
3.8.1 Error Representation
209(2)
3.8.1.1 Instrument Accuracy and Measurement Accuracy
210(1)
3.8.1.2 Accuracy and Precision
210(1)
3.9 Error Propagation and Combination
211(26)
3.9.1 Application of Sensitivity in Error Combination
212(1)
3.9.2 Absolute Error
213(1)
3.9.3 SRSS Error
213(1)
3.9.4 Equal Contributions from Individual Errors
214(5)
Summary Sheet
219(4)
Problems
223(12)
4 Estimation from Measurements
Chapter Highlights
235(1)
4.1 Sensing and Estimation
235(2)
4.2 Least-Squares Estimation
237(9)
4.2.1 Least-Squares Point Estimate
237(1)
4.2.2 Randomness in Data and Estimate
238(3)
4.2.2.1 Model Randomness and Measurement Randomness
239(2)
4.2.3 Least-Squares Line Estimate
241(2)
4.2.4 Quality of Estimate
243(3)
4.3 Maximum Likelihood Estimation
246(6)
4.3.1 Analytical Basis of MLE
247(1)
4.3.2 Justification of MLE through Bayes' Theorem
248(1)
4.3.3 MLE with Normal Distribution
248(2)
4.3.4 Recursive Maximum Likelihood Estimation
250(2)
4.3.4.1 Recursive Gaussian Maximum Likelihood Estimation
250(2)
4.3.5 Discrete MLE Example
252(1)
4.4 Scalar Static Kalman Filter
252(9)
4.4.1 Concepts of Scalar Static Kalman Filter
253(1)
4.4.2 Use of Bayes' Formula
254(2)
4.4.3 Algorithm of Scalar Static Kalman Filter
256(5)
4.5 Linear Multivariable Dynamic Kalman Filter
261(10)
4.5.1 State-Space Model
262(2)
4.5.2 System Response
264(1)
4.5.3 Controllability and Observability
265(1)
4.5.4 Discrete-Time State-Space Model
266(1)
4.5.5 Linear Kalman Filter Algorithm
267(4)
4.5.5.1 Initial Values of Recursion
268(3)
4.6 Extended Kalman Filter
271(4)
4.6.1 Extended Kalman Filter Algorithm
271(4)
4.7 Unscented Kalman Filter
275(8)
4.7.1 Unscented Transformation
276(2)
4.7.1.1 Generation of Sigma-Point Vectors and Weights
276(2)
4.7.1.2 Computation of Output Statistics
278(1)
4.7.2 Unscented Kalman Filter Algorithm
278(5)
Summary Sheet
283(5)
Problems
288(9)
5 Analog Sensors and Transducers
Chapter Highlights
297(1)
5.1 Sensors and Transducers
297(5)
5.1.1 Terminology
298(2)
5.1.1.1 Measurand and Measurement
298(1)
5.1.1.2 Sensor and Transducer
298(1)
5.1.1.3 Analog and Digital Sensor-Transducer Devices
299(1)
5.1.1.4 Sensor Signal Conditioning
299(1)
5.1.1.5 Pure, Passive, and Active Devices
300(1)
5.1.2 Sensor Types and Selection
300(2)
5.1.2.1 Sensor Classification Based on the Measurand
300(1)
5.1.2.2 Sensor Classification Based on Sensor Technology
301(1)
5.1.2.3 Sensor Selection
301(1)
5.2 Sensors for Electromechanical Applications
302(4)
5.2.1 Motion Transducers
302(1)
5.2.1.1 Multipurpose Sensing Elements
303(1)
5.2.1.2 Motion Transducer Selection
303(1)
5.2.2 Effort Sensors
303(3)
5.2.2.1 Force Sensors for Motion Measurement
304(1)
5.2.2.2 Force Sensor Location
304(2)
5.3 Potentiometer
306(9)
5.3.1 Rotatory Potentiometers
307(3)
5.3.1.1 Loading Nonlinearity
308(2)
5.3.2 Performance Considerations
310(3)
5.3.2.1 Potentiometer Ratings
310(1)
5.3.2.2 Resolution
310(1)
5.3.2.3 Sensitivity
311(2)
5.3.3 Optical Potentiometer
313(2)
5.3.3.1 Digital Potentiometer
314(1)
5.4 Variable-Inductance Transducers
315(16)
5.4.1 Inductance, Reactance, and Reluctance
317(1)
5.4.2 Linear-Variable Differential Transformer/Transducer
318(7)
5.4.2.1 Calibration and Compensation
320(1)
5.4.2.2 Phase Shift and Null Voltage
320(2)
5.4.2.3 Signal Conditioning
322(3)
5.4.2.4 Rotatory-Variable Differential Transformer/Transducer
325(1)
5.4.3 Mutual-Induction Proximity Sensor
325(2)
5.4.4 Resolver
327(4)
5.4.4.1 Demodulation
328(1)
5.4.4.2 Resolver with Rotor Output
329(1)
5.4.4.3 Self-Induction Transducers
330(1)
5.5 Permanent-Magnet and Eddy Current Transducers
331(10)
5.5.1 DC Tachometer
331(6)
5.5.1.1 Electronic Commutation
332(1)
5.5.1.2 Modeling of a DC Tachometer
333(1)
5.5.1.3 Design Considerations
334(3)
5.5.1.4 Loading Considerations
337(1)
5.5.2 AC Tachometer
337(2)
5.5.2.1 Permanent-Magnet AC Tachometer
338(1)
5.5.2.2 AC Induction Tachometer
338(1)
5.5.2.3 Advantages and Disadvantages of AC Tachometers
339(1)
5.5.3 Eddy Current Transducers
339(2)
5.6 Variable-Capacitance Transducers
341(8)
5.6.1 Capacitive-Sensing Circuits
342(3)
5.6.1.1 Capacitance Bridge
342(1)
5.6.1.2 Potentiometer Circuit
343(1)
5.6.1.3 Charge Amplifier Circuit
344(1)
5.6.1.4 LC Oscillator Circuit
345(1)
5.6.2 Capacitive Displacement Sensor
345(1)
5.6.3 Capacitive Rotation and Angular Velocity Sensors
346(1)
5.6.4 Capacitive Liquid Level Sensor
346(2)
5.6.4.1 Permittivity of Dielectric Medium
347(1)
5.6.5 Applications of Capacitive Sensors
348(1)
5.6.5.1 Advantages and Disadvantages
348(1)
5.6.5.2 Applications of Capacitive Sensors
348(1)
5.7 Piezoelectric Sensors
349(8)
5.7.1 Charge Sensitivity and Voltage Sensitivity
350(2)
5.7.2 Charge Amplifier
352(2)
5.7.3 Piezoelectric Accelerometer
354(3)
5.7.3.1 Piezoelectric Accelerometer
355(2)
5.8 Strain Gauges
357(14)
5.8.1 Equations for Strain-Gauge Measurements
357(9)
5.8.1.1 Bridge Sensitivity
360(1)
5.8.1.2 Bridge Constant
361(1)
5.8.1.3 Calibration Constant
362(3)
5.8.1.4 Data Acquisition
365(1)
5.8.1.5 Accuracy Considerations
365(1)
5.8.2 Semiconductor Strain Gauges
366(3)
5.8.3 Automatic (Self-)Compensation for Temperature
369(2)
5.9 Torque Sensors
371(21)
5.9.1 Strain-Gauge Torque Sensors
372(2)
5.9.2 Design Considerations
374(9)
5.9.2.1 Strain Capacity of the Gauge
377(1)
5.9.2.2 Strain-Gauge Nonlinearity Limit
377(1)
5.9.2.3 Sensitivity Requirement
378(1)
5.9.2.4 Stiffness Requirement
378(5)
5.9.3 Deflection Torque Sensors
383(3)
5.9.3.1 Direct-Deflection Torque Sensor
384(1)
5.9.3.2 Variable-Reluctance Torque Sensor
384(2)
5.9.3.3 Magnetostriction Torque Sensor
386(1)
5.9.4 Reaction Torque Sensors
386(2)
5.9.5 Motor Current Torque Sensors
388(2)
5.9.5.1 DC Motors
388(1)
5.9.5.2 AC Motors
388(2)
5.9.6 Force Sensors
390(2)
5.10 Gyroscopic Sensors
392(1)
5.10.1 Rate Gyro
392(1)
5.10.2 Coriolis Force Devices
392(1)
5.11 Thermo-Fluid Sensors
393(7)
5.11.1 Pressure Sensors
394(1)
5.11.2 Flow Sensors
395(2)
5.11.3 Temperature Sensors
397(30)
5.11.3.1 Thermocouple
397(1)
5.11.3.2 Resistance Temperature Detector
398(1)
5.11.3.3 Thermistor
399(1)
5.11.3.4 Bimetal Strip Thermometer
399(1)
5.11.3.5 Resonant Temperature Sensors
399(1)
Summary Sheet
400(7)
Problems
407(20)
6 Digital and Innovative Sensing
Chapter Highlights
427(1)
6.1 Innovative Sensor Technologies
427(3)
6.1.1 Analog versus Digital Sensing
428(1)
6.1.1.1 Analog Sensing Method: Potentiometer with 3-Bit ADC
429(1)
6.1.1.2 Digital Sensing Method: Eight Limit Switches
429(1)
6.1.2 Advantages of Digital Transducers
429(1)
6.2 Shaft Encoders
430(4)
6.2.1 Encoder Types
431(3)
6.2.1.1 Incremental Encoder
431(1)
6.2.1.2 Absolute Encoder
431(1)
6.2.1.3 Optical Encoder
432(1)
6.2.1.4 Sliding Contact Encoder
433(1)
6.2.1.5 Magnetic Encoder
433(1)
6.2.1.6 Proximity Sensor Encoder
433(1)
6.2.1.7 Direction Sensing
434(1)
6.3 Incremental Optical Encoder
434(5)
6.3.1 Direction of Rotation
435(2)
6.3.2 Encoder Hardware Features
437(1)
6.3.2.1 Signal Conditioning
438(1)
6.3.3 Linear Encoders
438(1)
6.4 Motion Sensing by Encoder
439(8)
6.4.1 Displacement Measurement
439(4)
6.4.1.1 Digital Resolution
440(1)
6.4.1.2 Physical Resolution
440(2)
6.4.1.3 Step-Up Gearing
442(1)
6.4.1.4 Interpolation
443(1)
6.4.2 Velocity Measurement
443(4)
6.4.2.1 Velocity Resolution
444(2)
6.4.2.2 Velocity with Step-Up Gearing
446(1)
6.4.2.3 Velocity Resolution with Step-Up Gearing
447(1)
6.5 Encoder Data Acquisition and Processing
447(4)
6.5.1 Data Acquisition Using a Microcontroller
447(2)
6.5.2 Data Acquisition Using a Desktop Computer
449(2)
6.6 Absolute Optical Encoders
451(3)
6.6.1 Gray Coding
451(2)
6.6.1.1 Code Conversion Logic
452(1)
6.6.2 Resolution
453(1)
6.6.3 Velocity Measurement
454(1)
6.6.4 Advantages and Drawbacks
454(1)
6.7 Encoder Error
454(5)
6.7.1 Eccentricity Error
455(4)
6.8 Miscellaneous Digital Transducers
459(8)
6.8.1 Binary Transducers
459(3)
6.8.2 Digital Resolvers
462(1)
6.8.3 Digital Tachometers
463(1)
6.8.4 Moire Fringe Displacement Sensors
464(3)
6.9 Optical Sensors, Lasers, and Cameras
467(11)
6.9.1 Fiber-Optic Position Sensor
467(1)
6.9.2 Laser Interferometer
468(1)
6.9.3 Fiber-Optic Gyroscope
469(1)
6.9.4 Laser Doppler Interferometer
470(1)
6.9.5 Light Sensors
471(4)
6.9.5.1 Photoresistor
472(1)
6.9.5.2 Photodiode
473(1)
6.9.5.3 Phototransistor
473(1)
6.9.5.4 Photo-FET
474(1)
6.9.5.5 Photocell
474(1)
6.9.5.6 Charge-Coupled Device
474(1)
6.9.6 Image Sensors
475(3)
6.9.6.1 Image Processing and Computer Vision
475(1)
6.9.6.2 Image-Based Sensory System
475(1)
6.9.6.3 Camera
476(1)
6.9.6.4 Image Frame Acquisition
477(1)
6.9.6.5 Color Images
477(1)
6.9.6.6 Image Processing
477(1)
6.9.6.7 Some Applications
477(1)
6.10 Miscellaneous Sensor Technologies
478(7)
6.10.1 Hall-Effect Sensor
478(2)
6.10.1.1 Hall-Effect Motion Sensors
478(1)
6.10.1.2 Properties
479(1)
6.10.2 Ultrasonic Sensors
480(1)
6.10.3 Magnetostrictive Displacement Sensor
481(1)
6.10.4 Impedance Sensing and Control
481(4)
6.11 Tactile Sensing
485(7)
6.11.1 Tactile Sensor Requirements
485(1)
6.11.1.1 Dexterity
486(1)
6.11.2 Construction and Operation of Tactile Sensors
486(2)
6.11.3 Optical Tactile Sensors
488(1)
6.11.4 A Strain-Gauge Tactile Sensor
489(2)
6.11.5 Other Types of Tactile Sensors
491(1)
6.12 MEMS Sensors
492(5)
6.12.1 Advantages of MEMS
492(1)
6.12.1.1 Special Considerations
492(1)
6.12.1.2 Rating Parameters
493(1)
6.12.2 MEMS Sensor Modeling
493(1)
6.12.2.1 Energy Conversion Mechanism
493(1)
6.12.3 Applications of MEMS
494(1)
6.12.4 MEMS Materials and Fabrication
494(2)
6.12.4.1 IC Fabrication Process
495(1)
6.12.4.2 MEMS Fabrication Processes
495(1)
6.12.5 MEMS Sensor Examples
496(1)
6.13 Sensor Fusion
497(11)
6.13.1 Nature and Types of Fusion
498(1)
6.13.1.1 Fusion Architectures
498(1)
6.13.2 Sensor Fusion Applications
499(2)
6.13.2.1 Enabling Technologies
501(1)
6.13.3 Approaches of Sensor Fusion
501(7)
6.13.3.1 Bayesian Approach to Sensor Fusion
501(2)
6.13.3.2 Continuous Gaussian Problem
503(3)
6.13.3.3 Sensor Fusion Using Kalman Filter
506(1)
6.13.3.4 Sensor Fusion Using Neural Networks
506(2)
6.14 Wireless Sensor Networks
508(12)
6.14.1 WSN Architecture
509(3)
6.14.1.1 Sensor Node
509(1)
6.14.1.2 WSN Topologies
510(1)
6.14.1.3 Operating System of WSN
510(2)
6.14.2 Advantages and Issues of WSNs
512(2)
6.14.2.1 Key Issues of WSN
512(1)
6.14.2.2 Engineering Challenges
513(1)
6.14.2.3 Power Issues
513(1)
6.14.2.4 Power Management
513(1)
6.14.3 Communication Issues
514(2)
6.14.3.1 Communication Protocol of WSN
514(1)
6.14.3.2 Routing of Communication in WSN
515(1)
6.14.3.3 WSN Standards
515(1)
6.14.3.4 Other Software of WSN
516(1)
6.14.4 Localization
516(3)
6.14.4.1 Methods of Localization
516(1)
6.14.4.2 Localization by Multilateration
516(2)
6.14.4.3 Distance Measurement Using Radio Signal Strength
518(1)
6.14.5 WSN Applications
519(23)
6.14.5.1 Medical and Assisted Living
520(1)
6.14.5.2 Structural Health Monitoring
520(1)
Summary Sheet
520(9)
Problems
529(11)
Reference
540(1)
7 Mechanical Transmission Components
Chapter Highlights
541(1)
7.1 Actuator-Load Matching
541(1)
7.2 Mechanical Components
542(3)
7.2.1 Transmission Components
543(2)
7.3 Lead Screw and Nut
545(5)
7.3.1 Positioning (x-y) Tables
548(2)
7.3.2 Analogy with Gear System
550(1)
7.4 Harmonic Drives
550(6)
7.4.1 Pin-Slot Transmission
552(1)
7.4.2 Other Designs of Harmonic Drive
552(2)
7.4.3 Friction Drives
554(2)
7.5 Continuously Variable Transmission
556(5)
7.5.1 Principle of Operation of an Innovative CVT
556(2)
7.5.2 Two-Slider CVT
558(2)
7.5.3 Three-Slider CVT
560(1)
7.6 Load Matching for Actuators
561(6)
7.6.1 Inertial Matching for Maximum Acceleration
562(1)
7.6.2 Actuator and Load Modeling
563(4)
Summary Sheet
567(1)
Problems
568(7)
8 Stepper Motors
Chapter Highlights
575(1)
8.1 Principle of Operation
575(7)
8.1.1 Introduction
575(1)
8.1.2 Terminology
576(1)
8.1.3 Permanent-Magnet Stepper Motor
576(4)
8.1.4 Variable-Reluctance Stepper Motor
580(1)
8.1.5 Polarity Reversal
580(2)
8.1.5.1 Advantages and Disadvantages
581(1)
8.2 Stepper Motor Classification
582(15)
8.2.1 Single-Stack Stepper Motors
583(4)
8.2.2 Toothed-Pole Construction
587(3)
8.2.2.1 Advantages of Toothed Construction
587(1)
8.2.2.2 Governing Equations
588(2)
8.2.3 Another Toothed Construction
590(2)
8.2.4 Microstepping
592(1)
8.2.4.1 Advantages and Disadvantages
593(1)
8.2.5 Multiple-Stack Stepper Motors
593(2)
8.2.5.1 Equal-Pitch Multiple-Stack Stepper
594(1)
8.2.5.2 Unequal-Pitch Multiple-Stack Stepper
595(1)
8.2.6 Hybrid Stepper Motor
595(2)
8.3 Driver and Controller
597(5)
8.3.1 Driver Hardware
599(1)
8.3.2 Motor Time Constant and Torque Degradation
600(2)
8.4 Torque Motion Characteristics
602(6)
8.4.1 Single-Pulse Response
602(3)
8.4.2 Response to a Pulse Sequence
605(1)
8.4.3 Slewing Motion
605(1)
8.4.4 Ramping
606(1)
8.4.5 Transient Motion
607(1)
8.5 Static Position Error
608(1)
8.6 Damping of Stepper Motors
609(7)
8.6.1 Approaches of Damping
610(6)
8.6.1.1 Mechanical Damping
610(3)
8.6.1.2 Electronic Damping
613(2)
8.6.1.3 Multiple-Phase Energization
615(1)
8.7 Stepper Motor Models
616(3)
8.7.1 Simplified Model
616(1)
8.7.2 Improved Model
617(2)
8.7.2.1 Torque Equation for PM and HB Motors
619(1)
8.7.2.2 Torque Equation for VR Motors
619(1)
8.8 Control of Stepper Motors
619(5)
8.8.1 Pulse Missing
619(2)
8.8.2 Feedback Control
621(2)
8.8.2.1 Feedback Encoder-Driven Stepper Motor
622(1)
8.8.3 Torque Control through Switching
623(1)
8.8.4 Model-Based Feedback Control
624(1)
8.9 Stepper Motor Selection and Applications
624(10)
8.9.1 Torque-Speed Characteristics and Terminology
625(2)
8.9.1.1 Residual Torque and Detent Torque
626(1)
8.9.1.2 Holding Torque
626(1)
8.9.1.3 Pull-Out Curve or Slew Curve
626(1)
8.9.1.4 Pull-In Curve or Start-Stop Curve
626(1)
8.9.2 Stepper Motor Selection
627(6)
8.9.2.1 Parameters of Motor Selection
628(5)
8.9.3 Stepper Motor Applications and Advantages
633(20)
8.9.3.1 Applications
633(1)
8.9.3.2 Advantages
634(1)
Summary Sheet
634(2)
Problems
636(17)
9 Continuous-Drive Actuators
Chapter Highlights
653(1)
9.1 Introduction
653(1)
9.1.1 Actuator Classification
653(1)
9.1.2 Actuator Requirements and Applications
654(1)
9.2 DC Motors
654(10)
9.2.1 Principle of Operation
655(1)
9.2.2 Rotor and Stator
656(1)
9.2.3 Commutation
657(1)
9.2.4 Static Torque Characteristics
657(2)
9.2.5 Brushless DC Motors
659(4)
9.2.5.1 Disadvantages of Slip-Rings and Brushes
659(1)
9.2.5.2 Permanent-Magnet Motors
660(1)
9.2.5.3 Brushless Commutation
660(1)
9.2.5.4 Constant-Speed Operation
661(1)
9.2.5.5 Transient Operation
661(1)
9.2.5.6 Advantages and Applications
662(1)
9.2.6 Torque Motors
663(1)
9.2.6.1 Direct-Drive Operation
663(1)
9.2.6.2 Brushless Torque Motors
663(1)
9.2.6.3 AC Torque Motors
664(1)
9.3 DC Motor Equations
664(13)
9.3.1 Assumptions
666(1)
9.3.2 Steady-State Characteristics
666(1)
9.3.3 Bearing Friction
667(1)
9.3.4 Output Power
668(1)
9.3.5 Combined Excitation of Motor Windings
669(1)
9.3.6 Speed Regulation
670(3)
9.3.7 Experimental Model
673(4)
9.3.7.1 Electrical Damping Constant
673(1)
9.3.7.2 Linearized Experimental Model
674(3)
9.4 Control of DC Motors
677(15)
9.4.1 Armature Control and Field Control
677(1)
9.4.2 DC Servomotors
678(1)
9.4.2.1 Need for Feedback
678(1)
9.4.2.2 Servomotor Control System
678(1)
9.4.3 Armature Control
679(8)
9.4.3.1 Motor Time Constants
680(2)
9.4.3.2 Motor Parameter Measurement
682(5)
9.4.4 Field Control
687(1)
9.4.5 Feedback Control of DC Motors
688(3)
9.4.5.1 Velocity Feedback Control
688(1)
9.4.5.2 Position Plus Velocity Feedback Control
688(1)
9.4.5.3 Position Feedback with PID Control
689(2)
9.4.6 Phase-Locked Control
691(1)
9.4.6.1 Phase Difference Sensing
691(1)
9.5 Motor Driver and Feedback Control
692(4)
9.5.1 Interface Card
693(1)
9.5.2 Driver Hardware
693(1)
9.5.3 Pulse-Width Modulation
694(2)
9.5.3.1 Duty Cycle
695(1)
9.6 DC Motor Selection
696(5)
9.6.1 Applications
696(1)
9.6.2 Motor Data and Specifications
696(1)
9.6.3 Selection Considerations
697(2)
9.6.4 Motor Sizing Procedure
699(2)
9.6.4.1 Inertia Matching
699(1)
9.6.4.2 Drive Amplifier Selection
700(1)
9.7 Induction Motors
701(9)
9.7.1 Advantages
702(1)
9.7.2 Disadvantages
702(1)
9.7.3 Rotating Magnetic Field
702(3)
9.7.4 Induction Motor Characteristics
705(2)
9.7.5 Torque-Speed Relationship
707(3)
9.8 Induction Motor Control
710(14)
9.8.1 Motor Driver and Controller
711(1)
9.8.2 Control Schemes
712(1)
9.8.3 Excitation Frequency Control
712(2)
9.8.4 Voltage Control
714(2)
9.8.5 Voltage/Frequency Control
716(1)
9.8.6 Field Feedback Control (Flux Vector Drive)
716(1)
9.8.7 Transfer-Function Model for an Induction Motor
717(5)
9.8.8 Induction Torque Motors
722(1)
9.8.9 Single-Phase AC Motors
722(2)
9.9 Synchronous Motors
724(1)
9.9.1 Operating Principle
724(1)
9.9.2 Starting a Synchronous Motor
725(1)
9.9.3 Control of a Synchronous Motor
725(1)
9.10 Linear Actuators
725(3)
9.10.1 Solenoid
726(1)
9.10.2 Linear Motors
727(1)
9.11 Hydraulic Actuators
728(13)
9.11.1 Advantages of Hydraulic Actuators
728(1)
9.11.2 Disadvantages
729(1)
9.11.3 Applications
729(1)
9.11.4 Components of a Hydraulic Control System
729(2)
9.11.5 Hydraulic Pumps and Motors
731(2)
9.11.6 Hydraulic Valves
733(5)
9.11.6.1 Spool Valve
734(2)
9.11.6.2 Steady-State Valve Characteristics
736(2)
9.11.7 Hydraulic Primary Actuators
738(2)
9.11.8 Load Equation
740(1)
9.12 Hydraulic Control Systems
741(13)
9.12.1 Need for Feedback Control
747(4)
9.12.1.1 Three-Term Control
748(3)
9.12.1.2 Advanced Control
751(1)
9.12.2 Constant-Flow Systems
751(1)
9.12.3 Pump-Controlled Hydraulic Actuators
752(1)
9.12.4 Hydraulic Accumulators
752(1)
9.12.5 Hydraulic Circuits
753(1)
9.13 Pneumatic Control Systems
754(3)
9.13.1 Flapper Valves
754(2)
9.13.2 Advantages and Disadvantages of Multiple Stages
756(1)
9.14 Fluidics
757(5)
9.14.1 Fluidic Components
758(2)
9.14.1.1 Logic Components
758(1)
9.14.1.2 Fluidic Motion Sensors
759(1)
9.14.1.3 Fluidic Amplifiers
760(1)
9.14.2 Fluidic Control Systems
760(1)
9.14.2.1 Interfacing Considerations
761(1)
9.14.2.2 Modular Laminated Construction
761(1)
9.14.3 Applications of Fluidics
761(1)
Summary Sheet
762(3)
Problems
765(14)
Appendix A: Probability and Statistics 779(10)
Appendix B: Reliability Considerations for Multicomponent Devices 789(8)
Appendix C: Answers to Numerical Problems 797(4)
Index 801
Dr. Clarence W. de Silva is a professor of mechanical engineering at the University of British Columbia, Vancouver, Canada. He earned his PhDs from Massachusetts Institute of Technology (1978) and the University of Cambridge, England (1998), and an honorary DEng from the University of Waterloo (2008). He has published and edited numerous books, chapters, journal articles, and conference papers. His recent books include Mechanics of Materials (Taylor & Francis/CRC, 2014), MechatronicsA Foundation Course (Taylor & Francis/CRC, 2010); Modeling and Control of Engineering Systems (Taylor & Francis/CRC, 2009); and Sensors and Actuators: Control System Instrumentation (Taylor & Francis/CRC, 2007).