Preface |
|
xv | |
|
Chapter 1 Background Material on Rings and Modules |
|
|
1 | (52) |
|
|
1 | (13) |
|
1.1 Categories and Functors |
|
|
2 | (3) |
|
|
5 | (3) |
|
|
8 | (1) |
|
|
9 | (2) |
|
|
11 | (1) |
|
1.6 Module Direct Summands of Rings |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (9) |
|
2.1 The Ring of Polynomial Functions on a Module |
|
|
14 | (1) |
|
2.2 Resultant of Two Polynomials |
|
|
15 | (4) |
|
2.3 Polynomial Functions on an Algebraic Curve |
|
|
19 | (2) |
|
|
21 | (2) |
|
|
23 | (14) |
|
|
23 | (4) |
|
|
27 | (2) |
|
|
29 | (4) |
|
3.4 Horn Tensor Relations |
|
|
33 | (3) |
|
|
36 | (1) |
|
§4 Direct Limit and Inverse Limit |
|
|
37 | (10) |
|
|
38 | (2) |
|
|
40 | (2) |
|
4.3 Inverse Systems Indexed by Nonnegative Integers |
|
|
42 | (3) |
|
|
45 | (2) |
|
|
47 | (6) |
|
|
52 | (1) |
|
Chapter 2 Modules over Commutative Rings |
|
|
53 | (38) |
|
§1 Localization of Modules and Rings |
|
|
53 | (5) |
|
1.1 Local to Global Lemmas |
|
|
54 | (3) |
|
|
57 | (1) |
|
§2 The Prime Spectrum of a Commutative Ring |
|
|
58 | (7) |
|
|
63 | (2) |
|
§3 Finitely Generated Projective Modules |
|
|
65 | (5) |
|
|
68 | (2) |
|
§4 Faithfully Flat Modules and Algebras |
|
|
70 | (5) |
|
|
74 | (1) |
|
|
75 | (5) |
|
|
78 | (2) |
|
§6 Faithfully Flat Base Change |
|
|
80 | (11) |
|
6.1 Fundamental Theorem on Faithfully Flat Base Change |
|
|
80 | (3) |
|
6.2 Locally Free Finite Rank is Finitely Generated Projective |
|
|
83 | (2) |
|
6.3 Invertible Modules and the Picard Group |
|
|
85 | (3) |
|
|
88 | (3) |
|
Chapter 3 The Wedderburn-Artin Theorem |
|
|
91 | (24) |
|
§1 The Jacobson Radical and Nakayama's Lemma |
|
|
91 | (3) |
|
|
94 | (1) |
|
§2 Semisimple Modules and Semisimple Rings |
|
|
94 | (9) |
|
2.1 Simple Rings and the Wedderburn-Artin Theorem |
|
|
97 | (3) |
|
2.2 Commutative Artinian Rings |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
103 | (3) |
|
§4 Completion of a Linear Topological Module |
|
|
106 | (9) |
|
4.1 Graded Rings and Graded Modules |
|
|
110 | (2) |
|
4.2 Lifting of Idempotents |
|
|
112 | (3) |
|
Chapter 4 Separable Algebras, Definition and First Properties |
|
|
115 | (44) |
|
§1 Separable Algebra, the Definition |
|
|
115 | (5) |
|
|
119 | (1) |
|
§2 Examples of Separable Algebras |
|
|
120 | (3) |
|
§3 Separable Algebras Under a Change of Base Ring |
|
|
123 | (4) |
|
§4 Homomorphisms of Separable Algebras |
|
|
127 | (10) |
|
|
133 | (4) |
|
§5 Separable Algebras over a Field |
|
|
137 | (9) |
|
5.1 Central Simple Equals Central Separable |
|
|
137 | (3) |
|
5.2 Unique Decomposition Theorems |
|
|
140 | (3) |
|
5.3 The Skolem-Noether Theorem |
|
|
143 | (1) |
|
|
144 | (2) |
|
§6 Commutative Separable Algebras |
|
|
146 | (9) |
|
6.1 Separable Extensions of Commutative Rings |
|
|
146 | (2) |
|
6.2 Separability and the Trace |
|
|
148 | (4) |
|
6.3 Twisted Form of the Trivial Extension |
|
|
152 | (1) |
|
|
153 | (2) |
|
§7 Formally Unramified, Smooth and Etale Algebras |
|
|
155 | (4) |
|
Chapter 5 Background Material on Homological Algebra |
|
|
159 | (40) |
|
|
159 | (14) |
|
1.1 Cocycle and Coboundary Groups in Low Degree |
|
|
161 | (2) |
|
1.2 Applications and Computations |
|
|
163 | (7) |
|
|
170 | (3) |
|
§2 The Tensor Algebra of a Module |
|
|
173 | (4) |
|
|
176 | (1) |
|
§3 Theory of Faithfully Flat Descent |
|
|
177 | (11) |
|
|
177 | (1) |
|
3.2 The Descent of Elements |
|
|
178 | (2) |
|
3.3 Descent of Homomorphisms |
|
|
180 | (1) |
|
|
181 | (5) |
|
|
186 | (2) |
|
|
188 | (3) |
|
|
191 | (8) |
|
5.1 The Definition and First Properties |
|
|
191 | (4) |
|
|
195 | (4) |
|
Chapter 6 The Divisor Class Group |
|
|
199 | (44) |
|
§1 Background Results from Commutative Algebra |
|
|
200 | (6) |
|
|
200 | (1) |
|
1.2 The Serre Criteria for Normality |
|
|
201 | (1) |
|
1.3 The Hilbert-Serre Criterion for Regularity |
|
|
202 | (2) |
|
1.4 Discrete Valuation Rings |
|
|
204 | (2) |
|
§2 The Class Group of Weil Divisors |
|
|
206 | (7) |
|
|
210 | (3) |
|
|
213 | (13) |
|
3.1 Definition and First Properties |
|
|
213 | (3) |
|
|
216 | (6) |
|
3.3 A Local to Global Theorem for Reflexive Lattices |
|
|
222 | (2) |
|
|
224 | (2) |
|
|
226 | (7) |
|
|
232 | (1) |
|
§5 Functorial Properties of the Class Group |
|
|
233 | (10) |
|
|
233 | (2) |
|
|
235 | (1) |
|
5.3 Galois Descent of Divisor Classes |
|
|
236 | (2) |
|
5.4 The Class Group of a Regular Domain |
|
|
238 | (4) |
|
|
242 | (1) |
|
Chapter 7 Azumaya Algebras, I |
|
|
243 | (44) |
|
§1 First Properties of Azumaya Algebras |
|
|
243 | (6) |
|
§2 The Commutator Theorems |
|
|
249 | (3) |
|
|
252 | (2) |
|
|
254 | (4) |
|
|
258 | (1) |
|
§5 Azumaya Algebras over a Field |
|
|
258 | (5) |
|
§6 Azumaya Algebras up to Brauer Equivalence |
|
|
263 | (4) |
|
|
266 | (1) |
|
§7 Noetherian Reduction of Azumaya Algebras |
|
|
267 | (7) |
|
|
273 | (1) |
|
§8 The Picard Group of Invertible Bimodules |
|
|
274 | (7) |
|
8.1 Definition of the Picard Group |
|
|
274 | (5) |
|
8.2 The Skolem-Noether Theorem |
|
|
279 | (1) |
|
|
280 | (1) |
|
§9 The Brauer Group Modulo an Ideal |
|
|
281 | (6) |
|
9.1 Lifting Azumaya Algebras |
|
|
284 | (2) |
|
9.2 The Brauer Group of a Commutative Artinian Ring |
|
|
286 | (1) |
|
Chapter 8 Derivations, Differentials and Separability |
|
|
287 | (42) |
|
§1 Derivations and Separability |
|
|
287 | (16) |
|
1.1 The Definition and First Results |
|
|
287 | (4) |
|
1.2 A Noncommutative Binomial Theorem in Characteristic p |
|
|
291 | (1) |
|
1.3 Extensions of Derivations |
|
|
292 | (2) |
|
|
294 | (2) |
|
1.5 More Tests for Separability |
|
|
296 | (5) |
|
1.6 Locally of Finite Type is Finitely Generated as an Algebra |
|
|
301 | (1) |
|
|
301 | (2) |
|
§2 Differential Crossed Product Algebras |
|
|
303 | (5) |
|
2.1 Elementary p-Algebras |
|
|
305 | (3) |
|
§3 Differentials and Separability |
|
|
308 | (9) |
|
3.1 The Definition and Fundamental Exact Sequences |
|
|
308 | (4) |
|
3.2 More Tests for Separability |
|
|
312 | (4) |
|
|
316 | (1) |
|
§4 Separably Generated Extension Fields |
|
|
317 | (8) |
|
4.1 Emmy Noether's Normalization Lemma |
|
|
320 | (3) |
|
|
323 | (2) |
|
|
325 | (4) |
|
5.1 A Differential Criterion for Regularity |
|
|
325 | (1) |
|
5.2 A Jacobian Criterion for Regularity |
|
|
326 | (3) |
|
|
329 | (38) |
|
§1 Complete Noetherian Rings |
|
|
329 | (7) |
|
§2 Etale and Smooth Algebras |
|
|
336 | (12) |
|
|
336 | (3) |
|
2.2 Formally Smooth Algebras |
|
|
339 | (7) |
|
2.3 Formally Etale is Etale |
|
|
346 | (1) |
|
2.4 An Example of Raynaud |
|
|
346 | (2) |
|
§3 More Properties of Etale Algebras |
|
|
348 | (13) |
|
3.1 Quasi-finite Algebras |
|
|
348 | (2) |
|
|
350 | (1) |
|
3.3 Standard Etale Algebras |
|
|
350 | (3) |
|
3.4 Theorems of Permanence |
|
|
353 | (2) |
|
3.5 Etale Algebras over a Normal Ring |
|
|
355 | (2) |
|
3.6 Topological Invariance of Etale Coverings |
|
|
357 | (2) |
|
3.7 Etale Neighborhood of a Local Ring |
|
|
359 | (2) |
|
§4 Ramified Radical Extensions |
|
|
361 | (6) |
|
|
364 | (3) |
|
Chapter 10 Henselization and Splitting Rings |
|
|
367 | (40) |
|
|
368 | (12) |
|
|
368 | (8) |
|
1.2 Henselian Noetherian Local Rings |
|
|
376 | (3) |
|
|
379 | (1) |
|
§2 Henselization of a Local Ring |
|
|
380 | (7) |
|
2.1 Henselization of a Noetherian Local Ring |
|
|
381 | (3) |
|
2.2 Henselization of an Arbitrary Local Ring |
|
|
384 | (1) |
|
2.3 Strict Henselization of a Noetherian Local Ring |
|
|
385 | (2) |
|
|
387 | (1) |
|
§3 Splitting Rings for Azumaya Algebras |
|
|
387 | (8) |
|
3.1 Existence of Splitting Rings (Local Version) |
|
|
387 | (4) |
|
3.2 Local to Global Lemmas |
|
|
391 | (3) |
|
3.3 Splitting Rings for Azumaya Algebras |
|
|
394 | (1) |
|
|
395 | (12) |
|
|
396 | (2) |
|
4.2 The Brauer group and Amitsur Cohomology |
|
|
398 | (9) |
|
Chapter 11 Azumaya Algebras, II |
|
|
407 | (38) |
|
§1 Invariants Attached to Elements in Azumaya Algebras |
|
|
407 | (7) |
|
1.1 The Characteristic Polynomial |
|
|
408 | (4) |
|
|
412 | (1) |
|
1.3 The Rank of an Element |
|
|
412 | (2) |
|
§2 The Brauer Group is Torsion |
|
|
414 | (5) |
|
2.1 Applications to Division Algebras |
|
|
417 | (2) |
|
|
419 | (17) |
|
3.1 Definition, First Properties |
|
|
419 | (3) |
|
3.2 Localization and Completion of Maximal Orders |
|
|
422 | (2) |
|
3.3 When is a Maximal Order an Azumaya Algebra? |
|
|
424 | (2) |
|
3.4 Azumaya Algebras at the Generic Point |
|
|
426 | (2) |
|
3.5 Azumaya Algebras over a DVR |
|
|
428 | (2) |
|
3.6 Locally Trivial Azumaya Algebras |
|
|
430 | (1) |
|
3.7 An Example of Ojanguren |
|
|
431 | (3) |
|
|
434 | (2) |
|
§4 Brauer Groups in Characteristic p |
|
|
436 | (9) |
|
4.1 The Brauer Group is p-divisible |
|
|
437 | (2) |
|
4.2 Generators for the Subgroup Annihilated by p |
|
|
439 | (3) |
|
|
442 | (3) |
|
Chapter 12 Galois Extensions of Commutative Rings |
|
|
445 | (52) |
|
§1 Crossed Product Algebras, the Definition |
|
|
445 | (2) |
|
§2 Galois Extension, the Definition |
|
|
447 | (9) |
|
2.1 Noetherian Reduction of a Galois Extension |
|
|
456 | (1) |
|
§3 Induced Galois Extensions and Galois Extensions of Fields |
|
|
456 | (3) |
|
§4 Galois Descent of Modules and Algebras |
|
|
459 | (3) |
|
§5 The Fundamental Theorem of Galois Theory |
|
|
462 | (6) |
|
5.1 Fundamental Theorem for a Connected Galois Extension |
|
|
463 | (3) |
|
|
466 | (2) |
|
|
468 | (5) |
|
6.1 Embedding a Separable Algebra |
|
|
468 | (2) |
|
6.2 Embedding a Connected Separable Algebra |
|
|
470 | (3) |
|
|
473 | (5) |
|
|
478 | (1) |
|
§8 Separable Closure and Infinite Galois Theory |
|
|
478 | (8) |
|
8.1 The Separable Closure |
|
|
478 | (5) |
|
8.2 The Fundamental Theorem of Infinite Galois Theory |
|
|
483 | (1) |
|
|
484 | (2) |
|
|
486 | (11) |
|
|
486 | (5) |
|
9.2 Artin-Schreier Extensions |
|
|
491 | (1) |
|
|
492 | (5) |
|
Chapter 13 Crossed Products and Galois Cohomology |
|
|
497 | (60) |
|
§1 Crossed Product Algebras |
|
|
498 | (3) |
|
§2 Generalized Crossed Product Algebras |
|
|
501 | (12) |
|
|
512 | (1) |
|
§3 The Seven Term Exact Sequence of Galois Cohomology |
|
|
513 | (12) |
|
3.1 The Theorem and Its Corollaries |
|
|
513 | (7) |
|
|
520 | (1) |
|
3.3 Galois Cohomology Agrees with Amitsur Cohomology |
|
|
521 | (2) |
|
3.4 Galois Cohomology and the Brauer Group |
|
|
523 | (2) |
|
|
525 | (1) |
|
§4 Cyclic Crossed Product Algebras |
|
|
525 | (7) |
|
|
528 | (1) |
|
4.2 Cyclic Algebras in Characteristic p |
|
|
528 | (2) |
|
4.3 The Brauer Group of a Henselian Local Ring |
|
|
530 | (1) |
|
|
531 | (1) |
|
§5 Generalized Cyclic Crossed Product Algebras |
|
|
532 | (9) |
|
§6 The Brauer Group of a Polynomial Ring |
|
|
541 | (16) |
|
6.1 The Brauer Group of a Graded Ring |
|
|
544 | (1) |
|
6.2 The Brauer Group of a Laurent Polynomial Ring |
|
|
545 | (1) |
|
6.3 Examples of Brauer Groups |
|
|
546 | (6) |
|
|
552 | (5) |
|
Chapter 14 Further Topics |
|
|
557 | (58) |
|
|
557 | (27) |
|
1.1 Norms of Modules and Algebras |
|
|
561 | (5) |
|
1.2 Applications of Corestriction |
|
|
566 | (2) |
|
1.3 Corestriction and Galois Descent |
|
|
568 | (3) |
|
1.4 Corestriction and Amitsur Cohomology |
|
|
571 | (6) |
|
1.5 Corestriction and Galois Cohomology |
|
|
577 | (4) |
|
1.6 Corestriction and Generalized Crossed Products |
|
|
581 | (2) |
|
|
583 | (1) |
|
§2 A Mayer-Vietoris Sequence for the Brauer Group |
|
|
584 | (15) |
|
|
585 | (6) |
|
2.2 Mayer-Vietoris Sequences |
|
|
591 | (7) |
|
|
598 | (1) |
|
§3 Brauer Groups of Some Nonnormal Domains |
|
|
599 | (16) |
|
3.1 The Brauer Group of an Algebraic Curve |
|
|
600 | (1) |
|
3.2 Every Finite Abelian Group is a Brauer Group |
|
|
601 | (1) |
|
3.3 A Family of Nonnormal Subrings of k[ x, y] |
|
|
602 | (3) |
|
3.4 The Brauer Group of a Subring of a Global Field |
|
|
605 | (7) |
|
|
612 | (3) |
Acronyms |
|
615 | (2) |
Glossary of Notations |
|
617 | (4) |
Bibliography |
|
621 | (10) |
Index |
|
631 | |