Atjaunināt sīkdatņu piekrišanu

E-grāmata: Separation of Variables for Partial Differential Equations: An Eigenfunction Approach

, (Georgia Institute of Technology, Atlanta, USA)
  • Formāts: 304 pages
  • Izdošanas datums: 21-Nov-2005
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781135437862
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 73,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 304 pages
  • Izdošanas datums: 21-Nov-2005
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781135437862
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Writing for advanced undergraduates, Cain and Meyer (both mathematics emeriti, Georgia Institute of Technology) introduce a computable separation of variables solutions as an analytic approximate solution. They work through the notion of a general partial differential equation in two independent variables with a source term and subject to boundary and initial conditions. Using an eignefunction approach they give an algorithm for approximating and solving the problem and show applications and solutions to practical problems, covering such topics as potential, heat and wave equation, basic approximation theory, Sturm-Liouville problems, Fourier series, eigenfunction expansions for equations in two independent variables, the one-dimension diffusion equation, the one-dimensional wave equation, potential problems in the Plane, and multidimensional problems. Annotation ©2006 Book News, Inc., Portland, OR (booknews.com)
Acknowledgments v
Preface vii
Potential, Heat, and Wave Equation
1(24)
Overview
1(1)
Classification of second order equations
2(1)
Laplace's and Poisson's equation
3(8)
The heat equation
11(7)
The wave equation
18(7)
Basic Approximation Theory
25(20)
Norms and inner products
26(3)
Projection and best approximation
29(5)
Important function spaces
34(11)
Sturm--Liouville Problems
45(22)
Sturm--Liouville problems for φ = μφ
45(8)
Sturm--Liouville problems for Lφ = μφ
53(6)
A Sturm--Liouville problem with an interface
59(8)
Fourier Series
67(28)
Introduction
67(1)
Convergence
68(6)
Convergence of Fourier series
74(3)
Cosine and sine series
77(3)
Operations on Fourier series
80(4)
Partial sums of the Fourier series and the Gibbs phenomenon
84(11)
Eigenfunction Expansions for Equations in Two Independent Variables
95(20)
One-Dimensional Diffusion Equation
115(46)
Applications of the eigenfunction expansion method
115(36)
Example 6.1 How many terms of the series solution are enough?
115(4)
Example 6.2 Determination of an unknown diffusivity from measured data
119(1)
Example 6.3 Thermal waves
120(5)
Example 6.4 Matching a temperature history
125(4)
Example 6.5 Phase shift for a thermal wave
129(2)
Example 6.6 Dynamic determination of a convective heat transfer coefficient from measured data
131(3)
Example 6.7 Radial heat flow in a sphere
134(3)
Example 6.8 A boundary layer problem
137(2)
Example 6.9 The Black--Scholes equation
139(3)
Example 6.10 Radial heat flow in a disk
142(4)
Example 6.11 Heat flow in a composite slab
146(2)
Example 6.12 Reaction-diffusion with blowup
148(3)
Convergence of uN (x, t) to the analytic solution
151(4)
Influence of the boundary conditions and Duhamel's solution
155(6)
One-Dimensional Wave Equation
161(34)
Applications of the eigenfunction expansion method
161(27)
Example 7.1 A vibrating string with initial displacement
161(5)
Example 7.2 A vibrating string with initial velocity
166(2)
Example 7.3 A forced wave and resonance
168(3)
Example 7.4 Wave propagation in a resistive medium
171(4)
Example 7.5 Oscillations of a hanging chain
175(2)
Example 7.6 Symmetric pressure wave in a sphere
177(3)
Example 7.7 Controlling the shape of a wave
180(2)
Example 7.8 The natural frequencies of a uniform beam
182(3)
Example 7.9 A system of wave equations
185(3)
Convergence of uN (x, t) to the analytic solution
188(2)
Eigenfunction expansions and Duhamel's principle
190(5)
Potential Problems in the Plane
195(60)
Applications of the eigenfunction expansion method
195(42)
Example 8.1 The Dirichlet problem for the Laplacian on a rectangle
195(6)
Example 8.2 Preconditioning for general boundary data
201(12)
Example 8.3 Poisson's equation with Neumann boundary data
213(2)
Example 8.4 A discontinuous potential
215(3)
Example 8.5 Lubrication of a plane slider bearing
218(2)
Example 8.6 Lubrication of a step bearing
220(1)
Example 8.7 The Dirichlet problem on an L-shaped domain
221(4)
Example 8.8 Poisson's equation in polar coordinates
225(5)
Example 8.9 Steady-state heat flow around an insulated pipe I
230(2)
Example 8.10 Steady-state heat flow around an insulated pipe II
232(2)
Example 8.11 Poisson's equation on a triangle
234(3)
Eigenvalue problem for the two-dimensional Laplacian
237(10)
Example 8.12 The eigenvalue problem for the Laplacian on a rectangle
237(2)
Example 8.13 The Green's function for the Laplacian on a square
239(4)
Example 8.14 The eigenvalue problem for the Laplacian on a disk
243(1)
Example 8.15 The eigenvalue problem for the Laplacian on the surface of a sphere
244(3)
Convergence of uN(x, y) to the analytic solution
247(8)
Multidimensional Problems
255(22)
Applications of the eigenfunction expansion method
255(10)
Example 9.1 A diffusive pulse test
255(3)
Example 9.2 Standing waves on a circular membrane
258(2)
Example 9.3 The potential inside a charged sphere
260(1)
Example 9.4 Pressure in a porous slider bearing
261(4)
The eigenvalue problem for the Laplacian in R3
265(12)
Example 9.5 An eigenvalue problem for quadrilaterals
265(1)
Example 9.6 An eigenvalue problem for the Laplacian in a cylinder
266(1)
Example 9.7 Periodic heat flow in a cylinder
267(2)
Example 9.8 An eigenvalue problem for the Laplacian in a sphere
269(2)
Example 9.9 The eigenvalue problem for Schrodinger's equation with a spherically symmetric potential well
271(6)
Bibliography 277(2)
Index 279


Cain, George; Meyer, Gunter H.