Atjaunināt sīkdatņu piekrišanu

E-grāmata: Serotonin: The Mediator that Spans Evolution

Edited by (Professor of Physiology, University of Sydney, Australia)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 181,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Serotonin: The Mediator That Spans Evolution provides a comprehensive review of the widespread roles for serotonin in respiratory, cardiovascular and thermoregulatory control, and for growth and development in early life. This important resource highlights serotonin’s role in normal (unstressed) conditions, and in response to a variety of physiological stressors. It focuses on new animal models, comparing and contrasting data from mice and rats. In addition, the book compares and contrasts the physiological effects of brain and blood serotonin systems and includes new data suggesting that the influence of serotonin is in part through the regulation of gene expression.

Finally, it discusses the role of serotonin system dysfunction in a variety of pathophysiological conditions, including sleep apnea, obesity and hypertension, and presents compelling evidence that this dysfunction is involved in Sudden Infant Death Syndrome (SIDS).

  • Includes the latest information on new animal models of serotonin system dysfunction
  • Explores the wide scope of serotonin’s influence on multiple organ and physiological systems
  • Highlights the autonomous functioning of the brain and body serotonin systems
  • Provides compelling evidence of serotonin dysfunction in SIDS, a leading cause of death in infancy
Contributors xv
Foreword xix
Part I BIOPHYSICS OF SEROTONIN
Chapter 1 Biophysics of Serotonin and the Serotonin1A Receptor: Fluorescence and Dynamics
3(20)
Parijat Sarkar
G. Aditya Kumar
Sreetama Pal
Amitabha Chattopadhyay
1 Serotonin: An Ancient Molecule With Diverse Properties
3(1)
2 Serotonin: A Fluorescent Neurotransmitter
4(1)
3 The Serotonin ia Receptor: A Representative Member of Serotonin Receptor Family
4(4)
4 Receptor Dynamics: The Relevance of Time Scales
8(2)
5 Membrane Lateral Dynamics of the SerotoniniA Receptor Utilizing Bleach Area--Dependent FRAP: Consequence of Membrane Domainization
10(3)
6 Actin Cytoskeleton--Induced Confined Dynamics of the SerotoniniA Receptor Revealed by zFCS
13(3)
7 Conclusion and the Road Ahead
16(1)
Acknowledgments
16(1)
References
17(6)
Chapter 2 Serotonin in Plants: Origin, Functions, and Implications
23(26)
Lauren A.E. Erland
Christina E. Turi
Praveen K. Saxena
Abbreviations
23(1)
1 Introduction
23(2)
2 Evolution and Occurrence in Plants
25(1)
3 Functions in Plants
25(9)
3.1 Photosynthesis
25(2)
3.2 Growth and Morphogenesis
27(2)
3.3 Reproduction
29(1)
3.4 Stress
30(3)
3.5 Signaling
33(1)
4 Serotonin Across Other Kingdoms and Applications Towards Phytoserotonin Research
34(4)
4.1 Animalia
34(2)
4.2 Fungi
36(1)
4.3 Protozoa
37(1)
4.4 Archaea
37(1)
4.5 Bacteria
37(1)
5 Conclusion
38(1)
References
39(10)
Part II ANATOMY
Chapter 3 Serotonergic Neurons in Vertebrate and Invertebrate Model Organisms (Rodents, Zebrafish, Drosophila melanogaster, Aplysia calif ornica, Caenorhabditis elegans)
49(32)
Christina Lillesaar
Patricia Gaspar
1 Introduction
49(2)
2 Vertebrate Models
51(11)
2.1 Rattus norvegicus and Mus musculus
51(8)
2.2 Danio rerio
59(3)
3 Invertebrates
62(8)
3.1 Drosophila melanogaster
62(3)
3.2 Aplysia calif ornica
65(2)
3.3 Caenorhabditis elegans
67(3)
Acknowledgments
70(1)
References
70(11)
Chapter 4 5-Hydroxytryptamine in the Endocrine Pancreas
81(10)
Malin Fex
1 Serotonin (5-Hydroxytryptamine) in the Islets of Langerhans
81(1)
2 5-HT Synthesis, Vesicular Loading, Uptake, and Breakdown in Pancreatic P-Cells
82(2)
3 Islet Hormone Secretion and 5-Hydroxytryptamine
84(2)
4 Functional Impact of Species Differences
86(1)
References
87(4)
Chapter 5 Serotonin in Platelets
91(30)
Jessica A. Maclean
Simone M. Schoenwaelder
Abbreviations
91(1)
1 Introduction: A Brief History of Platelets and Serotonin
92(1)
1.1 The Discovery of Platelets and Their Association With Serotonin
92(1)
2 The Biology of Platelets
93(8)
2.1 Major Platelet Receptors and Their Ligands
93(4)
2.2 Platelet Agonists
97(1)
2.3 Platelet Storage Granules
98(3)
3 Serotonin Within the Platelet
101(7)
3.1 Storage of Serotonin Within the Platelet
101(3)
3.2 The Action of Serotonin on the Platelet
104(1)
3.3 Physiological and Pathological Consequences of Serotonin in Platelets, Hemostasis, and Thrombosis
105(3)
4 Clinical Manifestations of Altered Platelet Serotonin
108(3)
4.1 Elevated Serotonin and Platelet Hyperactivity
108(1)
4.2 Serotonin in Hypertension
109(1)
4.3 Selective Serotonin Reuptake Inhibitors and an Increased Risk of Bleeding
109(1)
4.4 Targeting of the 5-ht2a Serotonin Receptor Subtype for Cardiovascular Indications
110(1)
5 Conclusion
111(1)
References
111(10)
Chapter 6 Anatomy of the Serotonin Transporter
121(16)
Kate Beecher
Arnauld Belmer
Selena E. Bartlett
1 Introduction
121(2)
1.1 Historical Background
121(1)
1.2 Topological Structure
121(1)
1.3 Function
122(1)
2 Anatomical Distribution of the 5-HTT in the Central Nervous System
123(5)
2.1 5-HTT Expression in Raphe Serotonin Neurons
123(3)
2.2 Distribution of the 5-HTT-Binding Sites
126(1)
2.3 Subcellular Localization of the 5-HTT by Electron Microscopy
127(1)
3 Expression and Localization of the 5-HTT in Nonserotonin Neurons or Glia
128(1)
4 Anatomical Distribution of the 5-HTT in the Peripheral Nervous System
128(1)
5 Absence of Serotonin Transporter in a Subset of Serotonin Axons
129(1)
6 Conclusion
129(1)
References
130(7)
Part III PHYSIOLOGY IN THE PERIPHERY
Chapter 7 Cellular Regulation of Peripheral Serotonin
137(18)
Alyce M. Martin
Richard L. Young
Lex Leong
Geraint B. Rogers
Nick J. Spencer
Claire F. Jessup
Damien J. Keating
1 Introduction
137(1)
2 Secretory Mechanisms of 5-Hydroxytryptamine Release From Enterochromaffin Cells
138(1)
3 Neurochemical and Mechanical Stimulation of Enterochromaffin Cells
139(2)
3.1 Neurochemical Stimuli
139(1)
3.2 Mechanical Stimuli
140(1)
4 Enterochromaffin Cells Are Nutrient Sensors
141(2)
5 Intestinal Bacteria Mediate Host Physiology Through Enterochromaffin Cell 5-Hydroxytryptamine
143(3)
6 Gastrointestinal Hormonal Cross Talk With Enterochromaffin Cells
146(1)
7 Concluding Remarks
146(1)
References
147(8)
Chapter 8 Role of 5-Hydroxytryptamine in the Control of Gut Motility
155(12)
Nick J. Spencer
Alyce M. Martin
Damien J. Keating
1 Introduction
155(1)
2 Release of 5-Hydroxytryptamine From the Mucosa
156(1)
3 Real-Time Recordings of 5-Hydroxytryptamine Release During Intestinal Motor Activities
156(1)
4 Mucosal Compression and Activation of Peristalsis
157(3)
5 Enterochromaffin Cells Release Many Substances
160(1)
6 Serotonin--A Neurotransmitter in the Enteric Nervous System?
161(1)
7 5-HT Antagonists Can Block Peristalsis in Preparations Depleted of All 5-HT
162(1)
8 Concluding Remarks
163(1)
Acknowledgments
163(1)
References
164(3)
Chapter 9 Phenotype of Mice Lacking Tryptophan Hydroxylase 1
167(14)
Michael Bader
1 Introduction
167(1)
2 Platelets, Immune System, and Inflammation
168(2)
3 Erythropoietic System
170(1)
4 Liver
171(1)
5 Pancreas and Fat
171(1)
6 Embryogenesis and Heart
172(1)
7 Lung
173(1)
8 Mammary Gland
173(1)
9 Gut
173(1)
10 Bone
174(1)
11 Conclusions
174(1)
References
175(6)
Chapter 10 Serotonin and the Immune System
181(16)
Anne Roumier
Catherine Bechade
Luc Maroteaux
1 Introduction
181(1)
1.1 How Do Immune Cells Encounter Serotonin?
181(1)
1.2 Serotonin and Hematopoiesis
181(1)
1.3 Serotonin and the Immune Tolerance
182(1)
2 Serotonin and the Innate Immune Response
182(7)
2.1 Serotonin and Neutrophils
184(1)
2.2 Serotonin and Monocytes
184(3)
2.3 Serotonin and Dendritic Cells
187(1)
2.4 Serotonin and Eosinophils
188(1)
2.5 Serotonin and Mast Cells
189(1)
3 Serotonin and Adaptive Immunity
189(3)
3.1 Serotonin and T Lymphocytes
190(1)
3.2 Serotonin and B Lymphocytes
191(1)
4 Concluding Remarks
192(1)
References
192(5)
Chapter 11 Serotonin and Adipocyte Function
197(6)
Malin Fex
Karin G. Stenkula
1 Adipose Tissue
197(1)
2 Impact of Serotonin on Metabolic Regulation
197(1)
3 Adipose Tissue-Specific Effects of 5-Hydroxytryptamine
198(1)
4 Impact of 5-Hydroxytryptamine on Adipokine Secretion
199(1)
5 5-Hydroxytryptamine-Mediated Effects on Preadipocyte Differentiation
200(1)
References
200(3)
Chapter 12 Serotonin and Cardiovascular Diseases
203(36)
Laurent Monassier
Luc Maroteaux
1 Introduction
203(2)
2 Serotonin in Cardiac Morphogenesis
205(2)
2.1 Expression and Function 5-ht2a and 5-ht2b Receptors in Embryonic Heart
205(1)
2.2 Expression and Function of 5-ht4 in Embryonic Heart
206(1)
2.3 Expression and Function of Serotonin Transporter in Embryonic Heart
206(1)
2.4 Maternal Origin of Serotonin
206(1)
3 Adult Origin of Serotonin
207(1)
4 Role of 5-HT2B Receptors in Postnatal Maturation and Cardiovascular Development
207(1)
5 Serotonin in Adult Heart
208(2)
5.1 Serotonin Origin in Adult Heart
208(1)
5.2 Depression and Cardiovascular Risk
209(1)
6 Serotonin in Carcinoid Heart
210(5)
6.1 Echocardiography Identification of Carcinoid Heart Lesions
211(1)
6.2 Anatomopathologic and Histologic Properties of Carcinoid Heart Lesions
212(1)
6.3 Implication of Serotonin in Carcinoid Heart Lesions
212(1)
6.4 Pharmacological Mechanisms in Carcinoid Heart
213(2)
7 Serotonin in Cardiac Hypertrophy and Failure
215(6)
7.1 Serotonin and Its Receptors in Cardiac Remodeling
217(2)
7.2 Serotonin and Its Receptors in Cardiac Hemodynamics and Failure
219(2)
7.3 Atrial Fibrillation and 5-HT4 Receptors
221(1)
8 Vascular Responses to Serotonin
221(7)
8.1 Hypertension
221(1)
8.2 Coronaropathy and Ischemic Preconditioning
222(2)
8.3 Migraine
224(1)
8.4 Pulmonary Arterial Hypertension
225(3)
References
228(11)
Chapter 13 Involvement of 5-HT in Cardiovascular Afferent Modulation of Brainstem Circuits Involved in Blood Pressure Maintenance
239(32)
Patrick S. Hosford
Andrew G. Ramage
Abbreviations
239(1)
1 Introduction
240(2)
2 Nucleus Tractus Solitarii
242(11)
2.1 5-HTi Receptors
242(1)
2.2 5-HTib/id Receptors
243(1)
2.3 5-HT2 Receptors
244(1)
2.4 5-HT3 Receptors
244(7)
2.5 5-HT4 Receptors
251(1)
2.6 5-HT5A and 5-HT6 Receptors
251(1)
2.7 5-HT? Receptors
251(2)
3 Overview
253(1)
4 Parasympathetic Nuclei--Nucleus Ambiguus and Dorsal Vagal Nucleus
254(6)
5 Sympathetic Premotor Neurones--Rostral Ventrolateral Medulla
260(1)
6 Conclusion
261(1)
References
261(10)
Chapter 14 Regulation of Nociceptor Signaling by Serotonin
271(36)
Isabella Salzer
Stefan Boehm
1 Terminology
271(1)
1.1 Pain
271(1)
1.2 Nociception
271(1)
1.3 Hyperalgesia
272(1)
1.4 Allodynia
272(1)
2 The Pain Pathway
272(1)
3 Serotonin Receptors
273(5)
3.1 G Protein--Coupled Receptors
273(4)
3.2 Ligand-Gated Ion Channels
277(1)
4 Ion Channels Involved in Nociception
278(10)
4.1 Ion Channels Sensing Noxious Signals
278(7)
4.2 Ion Channels Involved in the Transmission of Noxious Signals
285(3)
5 Serotonergic Modulation of Nociception
288(7)
5.1 Central Modulation of Nociception--Serotonergic-Descending Pathway
288(1)
5.2 Peripheral Sensitization of Nociception
288(2)
5.3 Interactions Between G-Protein--Coupled Receptors and Ion Channels
290(5)
References
295(12)
Part-IV PHYSIOLOGY IN THE BRAIN
Chapter 15 Brain Serotonin and Energy Homeostasis
307(28)
Pingwen Xu
Yanlin He
Yong Xu
1 Introduction
307(1)
2 Serotonin Receptors Regulate Feeding Behavior and Energy Expenditure
308(4)
2.1 5-HT1R Family
308(1)
2.2 5-HT2R Family
309(1)
2.3 5-HT3R Family
310(1)
2.4 5-HT4R Family
310(1)
2.5 5-HT5R Family
311(1)
2.6 5-HT6R Family
311(1)
2.7 5-HT7R Family
311(1)
3 Neuroanatomy of Serotonin Circuits With Relevance to Energy Homeostasis
312(4)
3.1 Hypothalamic Serotonin Circuits
312(3)
3.2 Extrahypothalamic Serotonin Circuits
315(1)
4 Serotonin Drugs and Obesity
316(3)
4.1 Fenfluramine and Dexfenfluramine
317(1)
4.2 Fluoxetine
317(1)
4.3 Sibutramine
318(1)
4.4 mCPP
318(1)
4.5 Lorcaserin
318(1)
5 Conclusions
319(1)
References
319(16)
Chapter 16 Serotonin in Central Cardiovascular Regulation: Ex Uno Plum (From One Comes Many)
335(14)
Paul M. Pilowsky
1 Anatomy of Serotonin Cell Bodies and Fibers
335(3)
2 Serotonin in the Brain and Reflexes
338(1)
3 Sympathetic Preganglionic Neurons and Serotonin Inputs
339(1)
4 Conclusion
339(1)
References
340(9)
Chapter 17 5-HT3 Receptor-Mediated Neural Transmission of Cardiorespiratory Modulation by the Nucleus of the Tractus Solitarius
349(20)
Caroline Sevoz-Couche
1 Introduction
349(3)
2 Role of NTS 5-HT3 Receptors in the Cardiovascular Regulation
352(6)
2.1 Modulation of Blood Pressure
352(2)
2.2 Modulation of Reflex Bradycardia
354(1)
2.3 Role of the NTS 5-HT3 Receptor in the Modulation of Stress-Induced Cardiovascular Responses
355(3)
3 Role of NTS 5-HT3 Receptors in the Respiratory Regulation During Stress
358(3)
4 Conclusion
361(1)
References
361(8)
Chapter 18 Serotonin Receptors as the Therapeutic Target for Central Nervous System Disorders
369(22)
Yukihiro Ohno
1 Introduction
369(1)
2 Serotonergic System in the Brain
370(2)
3 Therapeutic Role of 5-HT Receptors in CNS Disorders
372(10)
3.1 Schizophrenia
372(5)
3.2 Anxiety Disorders
377(1)
3.3 Depression
378(2)
3.4 Parkinson's Disease
380(2)
4 Summary
382(1)
Acknowledgments
382(1)
References
383(8)
Chapter 19 Serotonin and the Control of Eupneic Breathing
391(14)
Daniel B. Zoccal
1 Breathing Generation and Neuromodulation
391(2)
2 Control of Resting Breathing by Serotonin
393(2)
3 Serotonin and Chemoreflex Control of Breathing
395(1)
4 Serotonin and Plasticity of Respiratory Circuitries
396(2)
5 Perspectives
398(1)
References
399(6)
Chapter 20 Life Without Brain Serotonin: Phenotypes of Animals Deficient in Central Serotonin Synthesis
405(16)
Valentino Mosienko
Natalia Alenina
1 Tryptophan Hydroxylase 2: Serotonin-Synthesizing Enzyme in the Brain
405(1)
2 Genetically Modified Animal Models With Complete Loss of or Partial Reduction in TPH2 Activity
406(1)
3 Impact of Central Serotonin Deficiency on Neurotransmitter Systems and Formation of Serotonergic Neurons and Neuronal Circuitry
407(2)
4 Physiological Consequences of Central 5-Hydroxytryptamine Deficiency
409(3)
4.1 Growth Retardation During Early Postnatal Life
409(1)
4.2 Metabolism and Control of Autonomic Functions
410(2)
5 Behavioral Consequences of Central Serotonin Deficiency
412(2)
5.1 Behavioral Consequences of Tph2 Deficiency
412(2)
6 Conclusions
414(1)
References
415(6)
Index 421
Paul M Pilowsky began BMedSci(Hons), BMBS, PhD his career as a graduate student investigating, inter alia, the role of brainstem and spinal cord pathways in the control of blood pressure with a focus on serotonin. His work has now been cited more than 5000 times and published in major Journals including the Journal of Neuroscience, the Journal of Comparative Neurology and the British Journal of Pharmacology. A hallmark of his work has been the adoption of, and combination of, novel approaches to address difficult questions. He pioneered the use of combining single cell electrophysiology in vivo with immunohistochemistry. His development of isotype selective monoclonal antibodies to phosphorylated tyrosine hydroxylase enabled the detection of tyrosine hydroxylase positive presympathetic neurons in the brainstem that had become excited. He was responsible for the initial development of a new medical school at Macquarie University in Sydney. His service to Neuroscience was recognised by the award of the Australian Neuroscience Medal. He mentored 26 graduate students to on-time completion, and mentored 24 post-Doctoral Fellows, many of whom now have their own established careers. In imagining this book, it was felt that a departure from the usual highly focussed text would be of interest. Hence, a multi-Author volume has been created that reveals the multiple facets of a neurotransmitter with very broad actions.