Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sets: Naive, Axiomatic and Applied: A Basic Compendium with Exercises for Use in Set Theory for Non Logicians, Working and Teaching Mathematicians and Students

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 57,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Sets: Naive, Axiomatic and Applied is a basic compendium on naive, axiomatic, and applied set theory and covers topics ranging from Boolean operations to union, intersection, and relative complement as well as the reflection principle, measurable cardinals, and models of set theory. Applications of the axiom of choice are also discussed, along with infinite games and the axiom of determinateness. Comprised of three chapters, this volume begins with an overview of naive set theory and some important sets and notations. The equality of sets, subsets, and ordered pairs are considered, together with equivalence relations and real numbers. The next chapter is devoted to axiomatic set theory and discusses the axiom of regularity, induction and recursion, and ordinal and cardinal numbers. In the final chapter, applications of set theory are reviewed, paying particular attention to filters, Boolean algebra, and inductive definitions together with trees and the Borel hierarchy. This book is intended for non-logicians, students, and working and teaching mathematicians.