Atjaunināt sīkdatņu piekrišanu

Sharp Boundary Trace Theory and Schrodinger Operators on Bounded Lipschitz Domains [Mīkstie vāki]

  • Formāts: Paperback / softback, 208 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Jun-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472678
  • ISBN-13: 9781470472672
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 208 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Jun-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472678
  • ISBN-13: 9781470472672
Citas grāmatas par šo tēmu:
The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.
Chapters
1. Introduction
2. Sobolev and Besov Spaces on Lipschitz Domains
3. A Sharp Dirichlet Trace Involving Sobolev and Besov Spaces
4. Divergence theorems with Sobolev traces
5. A sharp Neumann trace involving Sobolev spaces
6. Schrodinger operators on open sets and bounded Lipschitz domains
7. Weyl-Titchmarsh operators for Schrodinger operators on bounded Lipschitz
domains
8. Maximal extensions of the Dirichlet and Neumann trace on bounded
Lipschitz domains
9. The Krein-von Neumann extension on bounded Lipschitz domains
10. A description of all self-adjoint extensions and Krein-type resolvent
formulas for Schrodinger operators on bounded Lipschitz domains
11. The case of variable coefficient operators
Jussi Behrndt, Technische Universitat Graz, Austria.

Fritz Gesztesy, Baylor University, Waco, Texas.

Marius Mitrea, Baylor University, Waco, Texas.