Atjaunināt sīkdatņu piekrišanu

Ships and Offshore Structures XIX [Multiple-component retail product]

Edited by (Technical University of Lisbon, Portugal), Edited by (Centre for Marine Technology and Engineering (CENTEC), Technical University of Lisbon, Portugal)
  • Formāts: Multiple-component retail product, 976 pages, height x width: 246x174 mm, weight: 1970 g, Contains 2 hardbacks
  • Izdošanas datums: 03-Sep-2015
  • Izdevniecība: CRC Press
  • ISBN-10: 1138028959
  • ISBN-13: 9781138028951
Citas grāmatas par šo tēmu:
  • Multiple-component retail product
  • Cena: 392,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Multiple-component retail product, 976 pages, height x width: 246x174 mm, weight: 1970 g, Contains 2 hardbacks
  • Izdošanas datums: 03-Sep-2015
  • Izdevniecība: CRC Press
  • ISBN-10: 1138028959
  • ISBN-13: 9781138028951
Citas grāmatas par šo tēmu:

This three-volume work presents the proceedings from the 19th International Ship and Offshore Structures Congress held in Cascais, Portugal on 7th to 10th September 2015. The International Ship and Offshore Structures Congress (ISSC) is a forum for the exchange of information by experts undertaking and applying marine structural research.

The aim of the ISSC is to facilitate the evaluation and dissemination of results from recent investigations; to make recommendations for standard design procedures and criteria; to discuss research in progress and planned; to identify areas requiring further research, and to encourage international collaboration in furthering theses aims. Structures of interest to the ISSC include ships and other marine structures used for transportation, exploration, and exploitation of resources in and under the oceans.

Preface xxv
Volume 1
Report of Committee I.1: Environment
1(72)
1 Introduction
4(1)
2 Environmental data
5(12)
2.1 Wind
6(2)
2.1.1 Locally sensed wind measurements
6(1)
2.1.2 Remotely sensed wind measurements
7(1)
2.1.3 Numerical modelling to complement measured data
8(1)
2.2 Waves
8(6)
2.2.1 Locally sensed wave measurements
9(3)
2.2.2 Remotely sensed wave measurements
12(1)
2.2.3 Numerical modelling to complement measured data
13(1)
2.2.4 Wave description from measured ship motions
14(1)
2.3 Current
14(1)
2.3.1 In-situ current measurements
14(1)
2.3.2 Remotely sensed current measurements
15(1)
2.3.3 Numerical modelling to complement measured data
15(1)
2.4 Sea water level
15(1)
2.4.1 Locally sensed sea water level measurements
15(1)
2.4.2 Remotely sensed sea water level measurements
15(1)
2.4.3 Numerical modelling to complement measured data
15(1)
2.5 Ice and snow
15(2)
2.5.1 Locally and remotely sensed ice and snow measurements
15(1)
2.5.2 Numerical modelling to complement measured data
16(1)
3 Environmental models
17(17)
3.1 Wind
17(3)
3.1.1 Analytical description of wind
18(1)
3.1.2 Statistical and spectral description of wind
18(2)
3.2 Waves
20(13)
3.2.1 Analytical and numerical wave models
20(8)
3.2.2 Experimental description of waves
28(2)
3.2.3 Statistical description of waves
30(2)
3.2.4 Spectral description of waves
32(1)
3.3 Current
33(1)
3.3.1 Analytical description of current
33(1)
3.3.2 Statistical and spectral description of current
34(1)
3.4 Sea water level
34(1)
3.5 Ice and snow
34(1)
4 Climate change
34(6)
4.1 New IPPC scenarios and climate models
35(5)
4.1.1 Temperature
36(1)
4.1.2 Ice and snow
37(1)
4.1.3 Sea water level
38(1)
4.1.4 Wind and waves
38(2)
4.1.5 Ocean circulation
40(1)
5 Special topics
40(7)
5.1 Hurricane
40(1)
5.2 Wave current interaction
41(4)
5.2.1 Wave-current interaction model
41(2)
5.2.2 Numerical and analytical method
43(1)
5.2.3 Experiments and measurements
44(1)
5.3 Wave and wind energy resource assessment
45(2)
6 Design and operational environment
47(10)
6.1 Design
47(5)
6.1.1 Met-Ocean data
47(1)
6.1.2 Design environment
48(3)
6.1.3 Design for climate change and rogue waves
51(1)
6.2 Operations
52(5)
6.2.1 Planning and executing marine operations
53(1)
6.2.2 Northern sea route, weather routing, warning criteria and current
54(2)
6.2.3 Eco-efficiency ship operation
56(1)
7 Conclusions
57(3)
7.1 Advances
59(1)
7.2 Recommendations
60(1)
Acknowledgements
60(1)
References
61(12)
Report of Committee I.2: Loads
73(68)
1 Introduction
75(1)
2 Computation of wave-induced loads
75(12)
2.1 Zero speed case
75(5)
2.1.1 Body - wave interactions
75(4)
2.1.2 Body-wave-current interactions
79(1)
2.1.3 Multibody interactions
79(1)
2.2 Forward speed case
80(3)
2.3 Hydroelasticity methods
83(2)
2.4 Loads from abnormal waves
85(2)
3 Ship structures - specialist topics
87(17)
3.1 Slamming and whipping
87(4)
3.2 Sloshing
91(5)
3.2.1 Analytical methods
91(1)
3.2.2 Experimental investigations
92(1)
3.2.3 Numerical simulation
93(1)
3.2.4 Sloshing with internal suppressing structures
94(1)
3.2.5 Sloshing and ship motions
95(1)
3.3 Green water
96(3)
3.4 Experimental and full scale measurements
99(2)
3.5 Loads due to damage following collision/grounding
101(1)
3.6 Weather routing and operational guidance
102(2)
4 Offshore structures specialist topics
104(11)
4.1 Vortex-induced vibrations (VIV) and vortex-induced motions (VIM)
104(4)
4.1.1 VIV
104(2)
4.1.2 VIM
106(2)
4.2 Mooring systems
108(3)
4.3 Lifting operations
111(2)
4.4 Wave-in-deck loads
113(1)
4.5 Floating offshore wind turbines
113(2)
5 Probabilistic modelling of loads on ships
115(5)
5.1 Probabilistic methods
115(2)
5.2 Equivalent design waves
117(2)
5.3 Design load cases and ultimate strength
119(1)
6 Fatigue loads for ships
120(3)
7 Uncertainty analysis
123(2)
7.1 Load uncertainties
123(1)
7.2 Uncertainties in loading conditions
124(1)
8 Conclusions
125(3)
References
128(13)
Report of Committee II.1: Quasi-static response
141(68)
1 Introduction
144(1)
2 Strength assessment approaches
144(4)
2.1 Modelling of loads by quasi-static analysis
144(2)
2.2 Response calculation
146(1)
2.3 Reliability
147(1)
3 Calculation procedures
148(13)
3.1 Taxonomy of engineering assessment methods
148(1)
3.1.1 Simplified analysis (rule-based design)/first principles
148(1)
3.1.2 Direct calculations
148(1)
3.1.3 Reliability analyses
148(1)
3.1.4 Optimisation-based analyses
149(1)
3.2 Design for production loads modelling
149(3)
3.2.1 Rules versus rational based ship design
149(1)
3.2.2 Direct simulations for global quasi-strength assessment
149(2)
3.2.3 Loads extracted from experiments and testing
151(1)
3.2.4 Loads from seakeeping codes
152(1)
3.3 Structural modelling
152(1)
3.3.1 Finite element modelling
152(1)
3.3.2 Models for global and detailed analyses
152(1)
3.3.3 Composite structures
153(1)
3.4 Structural response assessment
153(2)
3.4.1 Buckling and ultimate strength
153(1)
3.4.2 Fatigue strength
154(1)
3.4.3 Ship dynamics - vibrations
155(1)
3.5 Validation of calculation results
155(6)
3.5.1 Model scale experiments and testing
156(4)
3.5.2 Full scale hull stress monitoring
160(1)
4 Uncertainties associated with reliability-based quasi-static response assessment
161(8)
4.1 Uncertainties associated with loads
161(2)
4.1.1 Still water and wave loads
161(1)
4.1.2 Ice loads
162(1)
4.1.3 Combination factors
162(1)
4.2 Uncertainties in structural modelling
163(4)
4.2.1 Corrosion
163(1)
4.2.2 Structural characteristics
164(1)
4.2.3 Reliability and risk-based structural assessment
165(1)
4.2.4 Methods and criteria
165(1)
4.2.5 Structural capacity
166(1)
4.3 Risk-based inspection, maintenance and repair
167(2)
4.3.1 Inspection
167(1)
4.3.2 Maintenance and repair
168(1)
5 Ship structures
169(7)
5.1 Developments in international rules and regulations
169(4)
5.1.1 IMO goal-based standards
169(1)
5.1.2 IACS common structural rules for bulk carriers and oil tankers
170(2)
5.1.3 Development of structural design software systems
172(1)
5.2 Special ship concepts
173(3)
5.2.1 Service vessels for wind mills and offshore platforms
173(1)
5.2.2 Container ships
173(1)
5.2.3 LNG/LPG tankers
174(1)
5.2.4 Other ship types
175(1)
6 Offshore structures
176(8)
6.1 Types of analysis for various floating offshore structures
176(3)
6.2 Types of analysis for various fixed offshore structures
179(3)
6.3 Uncertainty, risk and reliability in offshore structural analysis
182(2)
7 Benchmark study
184(7)
7.1 Methodology
184(2)
7.2 Simplified methods
186(2)
7.3 Quasi-static linear FE analysis
188(1)
7.4 Nonlinear, transient dynamic FE analysis
188(2)
7.5 Concluding remarks
190(1)
8 Conclusions and recommendations
191(1)
References
192(17)
Report of Committee II.2: Dynamic response
209(70)
1 Introduction
211(1)
2 Ship structures
211(32)
2.1 Environmental-induced vibrations
211(9)
2.1.1 Wave-induced vibration
211(8)
2.1.2 Ice-induced vibration
219(1)
2.2 Machinery or propeller-induced vibrations
220(2)
2.2.1 Propeller-induced vibration
220(1)
2.2.2 Machinery-induced vibration
220(1)
2.2.3 Numerical and analytical vibration studies of ship structures
221(1)
2.3 Noise
222(5)
2.3.1 Interior noise
222(2)
2.3.2 Air radiated noise
224(1)
2.3.3 Underwater radiated noise
224(3)
2.4 Sloshing impact
227(2)
2.4.1 Experimental approaches
227(1)
2.4.2 Numerical modelling
228(1)
2.4.3 CCS structural response
229(1)
2.4.4 Current approaches for sloshing assessment
229(1)
2.5 Air blast and underwater explosion
229(3)
2.5.1 Air blast
229(1)
2.5.2 Underwater explosion
230(2)
2.6 Damping and countermeasures
232(2)
2.7 Monitoring
234(5)
2.7.1 Hull structural monitoring system
234(1)
2.7.2 New sensors technology and application
234(2)
2.7.3 New full scale monitoring campaigns and related studies
236(3)
2.8 Uncertainties
239(2)
2.9 Standards and acceptance criteria
241(2)
2.9.1 Habitability
241(1)
2.9.2 Underwater noise
242(1)
2.9.3 Others
242(1)
3 Offshore structures
243(11)
3.1 Vibration
243(6)
3.1.1 Wind-induced vibration
243(1)
3.1.2 Wave-induced vibration
244(1)
3.1.3 Vortex-induced motion
245(1)
3.1.4 Internal flow-induced vibration
246(1)
3.1.5 Ice-induced vibration
246(3)
3.2 Very large floating structures
249(1)
3.3 Noise
249(2)
3.3.1 Analysis of underwater noise by pile-driving
250(1)
3.3.2 Measurement and mitigation of underwater noise
250(1)
3.3.3 Equipment noise
250(1)
3.4 Blast
251(1)
3.5 Damping and countermeasures
252(1)
3.6 Uncertainties
253(1)
3.7 Standards and acceptance criteria
254(1)
4 Conclusion
254(3)
References
257(22)
Report of Committee III.1: Ultimate strength
279(72)
1 Introduction
282(1)
2 Fundamentals
283(1)
2.1 Design for ultimate strength
283(1)
2.2 General characteristics of ultimate strength
283(1)
3 Assessment procedure for ultimate strength
284(15)
3.1 Empirical and analytical methods
284(4)
3.1.1 Introduction
284(1)
3.1.2 Hull structures
285(1)
3.1.3 Residual strength of damage hull structures
286(2)
3.1.4 Plates and stiffened plates
288(1)
3.2 Numerical methods
288(3)
3.2.1 Introduction
288(1)
3.2.2 Nonlinear FE method
289(1)
3.2.3 Idealized structural unit method
290(1)
3.2.4 Conclusion
290(1)
3.3 Experimental methods
291(1)
3.4 Reliability assessment
292(2)
3.5 Rules and regulations
294(5)
3.5.1 Harmonized common structural rules
294(4)
3.5.2 Updates to offshore rules and guides
298(1)
4 Ultimate strength of various structures
299(23)
4.1 Tubular members and joints
299(2)
4.1.1 Tubular members
299(1)
4.1.2 Tubular joints
300(1)
4.2 Steel plate and stiffened plates
301(5)
4.2.1 Introduction
301(1)
4.2.2 Analytical formulations for ultimate strength of stiffened panels
302(1)
4.2.3 Uniaxial compression
302(1)
4.2.4 Multiple load effects
303(1)
4.2.5 Panels with openings, cut-outs or rupture damage
304(1)
4.2.6 Welding effects
304(1)
4.2.7 In service degradation
305(1)
4.2.8 Experimental testing
305(1)
4.2.9 Optimization
306(1)
4.2.10 Conclusions
306(1)
4.3 Shells
306(2)
4.4 Ship structures
308(4)
4.4.1 Progressive collapse methods
309(1)
4.4.2 Damaged structures
310(1)
4.4.3 Corrosion
310(1)
4.4.4 Complex ship structural components and complex loading
310(2)
4.4.5 Reviews and applications
312(1)
4.5 Offshore structures
312(2)
4.6 Composite structures
314(4)
4.6.1 Failure identification and material degradation models
315(1)
4.6.2 Ultimate strength of composite stiffened panels and box girders
316(1)
4.6.3 Environmental effects
317(1)
4.6.4 Compression after impact
317(1)
4.7 Aluminum structures
318(4)
4.7.1 Introduction
318(1)
4.7.2 Weld-induced effects
318(2)
4.7.3 Formulation development
320(1)
4.7.4 Experimental investigation
320(1)
4.7.5 Fiber-reinforced polymer strengthened
321(1)
4.7.6 Sandwich panels
321(1)
4.7.7 Hull girder
321(1)
4.7.8 Summary and recommendation for future works
322(1)
5 Benchmark study
322(17)
5.1 Small box girder
322(10)
5.1.1 Introduction
322(1)
5.1.2 Model parameters
323(1)
5.1.3 Baseline calculations
324(3)
5.1.4 Comparison with solid element mesh
327(1)
5.1.5 Comparison with Smith method
328(1)
5.1.6 Effect of imperfection amplitude and shape
329(2)
5.1.7 Effect of material model parameters
331(1)
5.1.8 Effect of plating thickness
331(1)
5.1.9 Summary/conclusions
332(1)
5.2 Three hold model of hull girder
332(6)
5.2.1 Calculation cases
332(3)
5.2.2 Calculation results
335(3)
5.3 Summary and recommendation for future works
338(1)
6 Conclusion and recommendation
339(1)
References
340(11)
Report of Committee III.2: Fatigue and fracture
351(64)
1 Introduction
354(1)
2 Fatigue life-cycle design philosophies and methodologies
354(4)
2.1 Fatigue and fracture in marine structures
354(1)
2.2 Preliminary design
354(1)
2.3 Detailed design
354(1)
2.4 Fabrication
355(1)
2.5 In-service maintenance
355(1)
2.5.1 Inspection techniques
355(1)
2.5.2 Inspection planning
355(1)
2.6 Fatigue strength
355(1)
2.6.1 S-N curves related to expected workmanship
355(1)
2.6.2 Crack propagation parameters
355(1)
2.7 Fracture strength
356(1)
2.8 Fatigue loads
356(1)
2.8.1 Wave loads
356(1)
2.8.2 Loading unloading
356(1)
2.8.3 Vibrations
356(1)
2.9 Environmental effects
356(1)
2.9.1 In air
357(1)
2.9.2 Seawater
357(1)
2.9.3 Other aggressive environments
357(1)
2.9.4 Coating and coating life
357(1)
2.10 Fatigue, fracture & failure criteria
357(1)
2.10.1 Failure definition
357(1)
2.10.2 Uncertainties
357(1)
2.10.3 Safety factors
358(1)
3 Factors influencing fatigue/fracture
358(20)
3.1 Resistance
358(6)
3.1.1 Thickness and size
358(1)
3.1.2 Environment (corrosion)
359(3)
3.1.3 Temperature
362(1)
3.1.4 Residual stress & constraint, mean stress
363(1)
3.2 Materials
364(1)
3.2.1 Metallic alloys
364(1)
3.2.2 Fatigue & fracture improvements through material changes, surface treatment
364(1)
3.3 Loading
365(8)
3.3.1 Stochastic loading (load interaction effects (sequence))
365(1)
3.3.2 Cycle counting - spectral, time-domain, stress ranges, means stress effect
365(1)
3.3.3 Complex stresses
366(3)
3.3.4 Recent developments in multiaxial fatigue criteria
369(4)
3.4 Structural integrity/life cycle management
373(4)
3.4.1 Fabrication and repair
373(1)
3.4.2 Inspection & monitoring of structure and coatings
374(2)
3.4.3 Inspection and maintenance
376(1)
3.5 Composites
377(1)
4 Fatigue assessment methods
378(21)
4.1 Overview
379(2)
4.2 Fatigue damage models
381(4)
4.2.1 Stress based concepts
381(1)
4.2.2 Strain concepts
382(1)
4.2.3 Notch-intensity factor, -integral and -energy density concepts
382(1)
4.2.4 Confidence and reliability
383(2)
4.3 Fracture mechanics models
385(7)
4.3.1 Crack growth rate model
389(1)
4.3.2 Crack growth assessment
390(1)
4.3.3 Fracture mechanics based fatigue evaluation of ship structures
391(1)
4.4 Rules, standards & guidance
392(3)
4.4.1 Ship rules
392(2)
4.4.2 Design codes for offshore structures
394(1)
4.4.3 IIW recommendation
395(1)
4.4.4 ISO standards
395(1)
4.5 Acceptance criteria
395(1)
4.6 Measurement techniques
396(3)
4.6.1 Crack growth and propagation
396(1)
4.6.2 Fatigue
397(1)
4.6.3 Material properties
398(1)
4.6.4 Fracture toughness
398(1)
5 Benchmarking study
399(5)
5.1 Problem statement
399(1)
5.2 Analytical methods
400(2)
5.3 Numerical analysis using FEM
402(1)
5.4 Results
403(1)
5.5 Discussion & benchmarking study conclusions
404(1)
6 Summary & conclusions
404(1)
References
405(10)
Report of Committee IV.1: Design principles and criteria
415(44)
1 Introduction
418(1)
1.1 General concept of sustainability oriented design
418(1)
1.2 Goal oriented normative framework
418(1)
1.3 Procedures for the impact analysis of regulations
419(1)
2 Quantification of sustainability aspects
419(11)
2.1 Economic aspects
419(1)
2.2 Human aspects
420(1)
2.3 GCAF and NCAF indicators for loss of life
420(3)
2.3.1 Life Quality Index
421(1)
2.3.2 DALY and QALY indicators
422(1)
2.4 Environmental aspects
423(7)
2.4.1 Cost of averting a tonne of oil spilt (CATS)
423(4)
2.4.2 CO2 emissions costs
427(1)
2.4.3 Other emissions costs
428(2)
3 Depreciation rates in decision making
430(7)
3.1 Pure time preferences
431(1)
3.2 Precautionary approach vs standard economic theory
431(1)
3.3 Integrated Assessment Models
432(2)
3.4 Tails of the probability distributions
434(1)
3.5 Role of the discounting rate
434(3)
3.6 Conclusion (depreciation rates)
437(1)
4 Examples related to sustainability oriented design
437(6)
4.1 Probability based design
437(2)
4.2 Lifecycle design
439(2)
4.3 Lifecycle design considering future climate change
441(2)
5 Regulatory framework for marine structures
443(8)
5.1 Development of goal based standards at IMO
444(3)
5.1.1 IACS harmonized common structural rules for bulk carriers and tankers
444(2)
5.1.2 Goal based standards/safety level approach (GBS/SLA) at IMO
446(1)
5.2 Regulatory actions implemented at IMO targeting environmental protection
447(2)
5.2.1 Energy Efficiency Design Index (EEDI)
447(1)
5.2.2 NOx SOx control
447(1)
5.2.3 Emission control areas
447(1)
5.2.4 MARPOL Annex V prevention of pollution by garbage from ships
448(1)
5.2.5 IMO ship recycling (the Hong Kong convention)
448(1)
5.2.6 Pre-normative investigations at imo in the field of noise radiation into water
449(1)
5.3 Other (non IMO) regulatory actions in the field of ships
449(2)
5.3.1 Developments in the naval ship code
449(1)
5.3.2 Inland vessels
450(1)
5.3.3 EU directive on safety of offshore oil and gas operations
451(1)
5.4 Comments on the recent developments in the normative framework
451(1)
6 Studies focussing on environmental impact
451(2)
6.1 Studies on green house gas emissions
451(1)
6.2 Studies on countermeasures to limit emissions
452(9)
6.2.1 Slow steaming
452(1)
6.2.2 Scale effects and propulsive improvements
452(1)
6.2.3 Discussions of the EEDI concept
452(1)
6.2.4 Studies on control of NOx and SOx emissions
453(1)
6.2.5 Emissions trading schemes
453(1)
6.2.6 Alternative fuels
453(1)
7 Conclusions
453(1)
References
454(5)
Report of Committee IV.2: Design methods
459(60)
1 Introduction
461(1)
2 Design methodology
461(6)
2.1 Developments in procedural aspects of ship design methodology
462(1)
2.2 Developments in "Design-for-X" and risk-based design
462(3)
2.3 Developments in ship form-function mapping, tradespace searches
465(1)
2.4 Handling uncertainty in future operating context
466(1)
3 Design tools
467(5)
3.1 Introduction
467(1)
3.2 Development of design tools
467(2)
3.3 Tools for lifecycle cost modeling and lifecycle assessment
469(1)
3.4 Links between design tools and production and operational phases
469(2)
3.5 Developments in integrated naval architecture packages
471(1)
4 Optimization developments
472(15)
4.1 Introduction to Design Support Systems (DESS)
472(3)
4.2 Parallel processing and hardware developments
475(2)
4.3 Developments in structural optimization algorithms (optimization solvers-Σ)
477(5)
4.4 Surrogate modeling and variable fidelity approaches (surrogate solvers-Σ)
482(2)
4.4.1 Surrogate modeling in design and optimization
483(1)
4.4.2 Surrogate modeling in risk and safety analyses
484(1)
4.5 Optimization for production (design quality modules-ΩProductions)
484(2)
4.6 Optimization for lifecycle costing (design quality modules-ΩLCC)
486(1)
5 Classification society software review
487(12)
5.1 Background, motivation, and aim
487(1)
5.2 Tool analysis
488(2)
5.2.1 Overall functionality
488(1)
5.2.2 Evaluation criteria
488(2)
5.3 Classification societies tools details
490(8)
5.3.1 American Bureau of Shipping (ABS)-www.eagle.org
490(1)
5.3.2 Bureau Veritas (BV)-www.bureauveritas.com
491(1)
5.3.3 China Classification Society (CCS)-www.ccs.org.cn
491(1)
5.3.4 Croatian Register of Shipping (CRS)-www.crs.hr
492(1)
5.3.5 DNV-GL
493(2)
5.3.6 Korean Register of Shipping (KR)-www.krs.co.kr
495(1)
5.3.7 Nippon Kaiji Kyokai (ClassNK)-www.classnk.com
496(1)
5.3.8 Polish Register of Shipping (PRS)-www.prs.pl
497(1)
5.3.9 Registro Italiano Navale (RINA)-www.rina.org
498(1)
5.4 Conclusions and future challenges
498(1)
6 Structural lifecycle management
499(7)
6.1 Introduction
499(1)
6.2 Tool development
500(2)
6.3 Data interchange and standards
502(1)
6.4 Integration with repair
503(1)
6.5 Integration with structural health monitoring systems
504(2)
6.6 Summary of the lifecycle structural management systems
506(1)
7 Obstacles, challenges, and future developments
506(2)
8 Conclusion
508(1)
Acknowledgments
509(1)
References
509(10)
Volume 2
Report of Committee V.1: Accidental limit states
519(72)
1 Introduction
523(1)
2 Fundamentals of ALS design
524(4)
2.1 Introduction
524(1)
2.2 Codes and standards
525(2)
2.3 Updates of codes and standards
527(1)
2.4 Uncertainties in ALS in design
527(1)
2.5 Practice for ships
527(1)
3 Hazard identification
528(4)
3.1 Introduction
528(2)
3.2 Hazard identification
530(2)
4 Safety levels in ALS design
532(6)
4.1 Introduction
532(1)
4.2 Safety level of offshore structures in ALS
532(3)
4.2.1 General
532(1)
4.2.2 Discussion of new ISO standards for offshore structures
532(1)
4.2.3 Characterization of hazards
533(1)
4.2.4 Accidental design situations
533(1)
4.2.5 ALS safety levels implied in structural codes
533(2)
4.3 Safety level of ship structures in ALS
535(3)
4.3.1 General
535(1)
4.3.2 GBS of ship structure design
535(1)
4.3.3 Safety level in ULS in CSR
536(1)
4.3.4 Safety level in ALS in CSR-H
536(2)
5 Assessment of accidental loads
538(9)
5.1 Introduction
538(1)
5.2 Explosion load assessment
538(4)
5.2.1 Deterministic approach
539(1)
5.2.2 Probabilistic approach
539(3)
5.2.3 Definition of explosion loads for design
542(1)
5.3 Fire load assessment
542(2)
5.3.1 Deterministic approach
542(1)
5.3.2 Risk-based and probabilistic approach
543(1)
5.4 Load assessment for collision accidents
544(2)
5.4.1 Deterministic approach
545(1)
5.4.2 Risk-based and probabilistic approach
545(1)
5.5 Load assessment for dropped object accidents
546(1)
5.5.1 Deterministic approach
546(1)
5.5.2 Risk-based approach
547(1)
6 Determination of action effects
547(14)
6.1 Introduction
547(2)
6.2 Review of numerical tools
549(1)
6.3 Modelling geometries
550(2)
6.4 Modelling loads
552(2)
6.4.1 Ship collision
552(1)
6.4.2 Dropped objects
553(1)
6.4.3 Explosions
553(1)
6.4.4 Fire
554(1)
6.5 Material models
554(6)
6.5.1 Plasticity model
557(1)
6.5.2 Stress-strain curve
557(1)
6.5.3 Failure criteria
557(3)
6.6 Uncertainties of ALS models
560(1)
6.7 Probabilistic methods
560(1)
6.8 Appendix A
560(1)
6.8.1 True stress-strain curve for Ls-Dyna
560(1)
7 Benchmark study. Resistance of topside structures Subjected to fire
561(15)
7.1 Scope of work
561(1)
7.2 Strategy of benchmark study
562(1)
7.3 Input
562(4)
7.3.1 Geometry of target structure
562(1)
7.3.2 Material data
563(1)
7.3.3 Boundary conditions
564(1)
7.3.4 Loads
564(2)
7.4 Results
566(9)
7.4.1 Static analysis
566(1)
7.4.2 Push-down analysis
567(1)
7.4.3 Fire analysis
568(2)
7.4.4 Design of PFP
570(1)
7.4.5 Effects of boundary conditions
571(1)
7.4.6 Methods of controlling numerical instability for beam element model
571(2)
7.4.7 Effects of local heat flux
573(2)
7.5 Conclusion from the benchmark study
575(1)
8 References
576(3)
9 Annex
1. Material models for non-linear finite element analysis
579(12)
9.1 Introduction
579(1)
9.2 Guidelines and standards
580(1)
9.3 Material model database
580(9)
9.3.1 Steel
580(3)
9.3.2 Aluminium
583(1)
9.3.3 Foam, isolator, rubber
584(1)
9.3.4 Ice
584(1)
9.3.5 Air
585(1)
9.3.6 Water
586(1)
9.3.7 Explosives
586(1)
9.3.8 Risers, umbilical or power cable
587(1)
9.3.9 Composites
587(1)
9.3.10 Concrete
588(1)
9.3.11 Soil
588(1)
9.4 References
589(2)
Report of Committee V.2: Natural gas storage and transportation
591(28)
1 Introduction
593(1)
2 Background
593(2)
3 Safety and design
595(13)
3.1 Cargo containment
595(1)
3.1.1 Non-self supporting tanks-membrane tanks
595(1)
3.1.2 Independent tanks
595(1)
3.1.3 New development of CCS
596(1)
3.2 Structural integrity and rules
596(2)
3.3 Sloshing
598(4)
3.3.1 Global flow and sloshing-ship motion coupling, online sloshing prediction
598(1)
3.3.2 Long-term assessment
599(1)
3.3.3 Experimental methods, benchmark
600(1)
3.3.4 Sloshing model test benchmark
600(1)
3.3.5 Sloshing physics, scaling ELPs, dominating physics and relevant scaling laws
600(1)
3.3.6 Numerical methods
601(1)
3.4 Leakage
602(1)
3.5 Fatigue
602(1)
3.6 Collision, grounding, flooding
603(2)
3.7 Sloshing control
605(1)
3.8 Fire safety, temperature control of hull structures
605(3)
4 LNG as fuel
608(2)
4.1 Why LNG as fuel
608(1)
4.2 LNG supply chain
608(2)
5 Safety and design special applications
610(2)
5.1 Floating LNG, FLNG, FSRU
610(1)
5.2 Side by side or tandem mooring?
611(1)
5.3 Arctic
612(1)
6 Conclusions
612(1)
References
612(7)
Report of Committee V.3: Materials and fabrication technology
619(50)
1 Introduction
622(1)
2 General trends
622(7)
2.1 Developments in the maritime markets and their impact on the trends in Fabrication and materials technologies
622(3)
2.1.1 Korea
624(1)
2.1.2 Japan
624(1)
2.1.3 China
624(1)
2.1.4 Europe
624(1)
2.1.5 Brazil
625(1)
2.2 Ongoing research programmes on fabrication and materials
625(4)
2.2.1 Korea
625(1)
2.2.2 Japan
626(1)
2.2.3 China
626(1)
2.2.4 Europe
626(1)
2.2.5 Brazil
627(1)
2.2.6 USA
628(1)
3 Structural materials
629(8)
3.1 Metallic materials
629(4)
3.1.1 Aluminium alloys
629(1)
3.1.2 Titanium
630(1)
3.1.3 Metal foam
630(1)
3.1.4 Application of metals in low temperatures
631(2)
3.2 Non-metallic materials
633(4)
3.2.1 Fire resistant materials
634(1)
3.2.2 Bio-composites
634(2)
3.2.3 Influence of sea water on non-metallic materials
636(1)
3.2.4 Recycling and disposal
636(1)
3.2.5 Application of non metallic materials at low temperatures
637(1)
3.3 Hybrid materials
637(1)
4 Joining and fabrication technology
637(7)
4.1 Advances in joining technology
637(3)
4.1.1 Welding automation and recent developments in joining technologies
637(1)
4.1.2 Underwater welding
638(1)
4.1.3 Frictions stir welding of steel
638(2)
4.2 Innovations in fabrication technology
640(2)
4.2.1 Plate bending with line heating
640(1)
4.2.2 Post-treatment of welded joints and plate edges
640(1)
4.2.3 Hybrid structures and joints
641(1)
4.3 Influence of production quality on strength
642(2)
4.3.1 Weld geometry and misalignments
642(1)
4.3.2 Effect residual stress and distortions
643(1)
4.3.3 Utilisation of high strength steel and thin plates
643(1)
4.4 Dimension and quality control
644(1)
5 Corrosion protection
644(5)
5.1 Protection rules
644(1)
5.2 Coating and paints
645(2)
5.2.1 Epoxy-based coating systems
645(1)
5.2.2 Zinc-rich paints
645(1)
5.2.3 Thermal spraying and deposition
645(1)
5.2.4 Antifouling (AF) coatings
646(1)
5.2.5 Self healing coatings
646(1)
5.2.6 Intelligent coatings
646(1)
5.2.7 Ice-breaker coatings
646(1)
5.3 Cathodic protection
647(1)
5.4 Corrosion resistant steels
647(1)
5.5 Corrosion monitoring
648(1)
5.6 Non destructive testing
648(1)
5.6.1 Visual inspection of welds
648(1)
5.6.2 Inspection for delayed (hydrogen induced) cracking
648(1)
5.6.3 Methods of inspection
649(1)
5.6.4 Under film corrosion detection
649(1)
6 Manufacturing simulation
649(4)
6.1 Discrete event simulation and production optimization
650(2)
6.1.1 Layout planning
650(1)
6.1.2 Production planning
651(1)
6.1.3 Outfitting and customization
651(1)
6.1.4 Logistic simulations
652(1)
6.2 Virtual and augmented reality
652(1)
7 Welding simulation
653(6)
7.1 Computation welding mechanics
653(1)
7.2 Arc welding simulation methodologies
653(1)
7.2.1 Sequentially coupled thermos-mechanical models
653(1)
7.2.2 Thermo-mechanical staggered coupled
653(1)
7.3 Heat source models
654(1)
7.4 Material models
655(1)
7.5 Thermal- and mechanical boundary conditions
656(1)
7.6 Mesh size
657(1)
7.7 Computational time and cost
657(1)
7.8 Weld residual stress measurements
657(1)
7.9 Benchmark case
658(1)
8 Conclusions and recommendations
659(1)
References
660(9)
Report of Committee V.4: Offshore renewable energy
669(54)
1 Introduction
671(1)
2 Offshore renewable energy resources
671(4)
2.1 Offshore wind energy resources
671(2)
2.1.1 Resource assessment
672(1)
2.2 Wave energy resources
673(1)
2.3 Tidal and ocean current energy resources
674(1)
2.3.1 Physical resource assessment
674(1)
2.3.2 Numerical resource modelling
674(1)
3 Offshore wind turbines
675(18)
3.1 Recent industry and research development
675(3)
3.2 Numerical modelling and analysis
678(9)
3.2.1 Numerical tools - state-of-the-art
678(1)
3.2.2 Load and response analysis of bottom-fixed wind turbines
679(2)
3.2.3 Load and response analysis of floating wind turbines
681(6)
3.3 Physical testing
687(2)
3.3.1 Laboratory testing
687(2)
3.3.2 Field testing
689(1)
3.4 Transportation, installation, operation and maintenance
689(3)
3.4.1 Current industry and research development
690(1)
3.4.2 Numerical simulations of marine operations
691(1)
3.4.3 Guidelines on marine operations for offshore wind turbine transportation, installation, operation and maintenance
692(1)
3.5 Rules and standards
692(1)
4 Wave energy converters
693(10)
4.1 Numerical modelling and analysis
695(5)
4.1.1 Load and motion response analysis
695(3)
4.1.2 Mooring analysis
698(1)
4.1.3 Power take-off analysis
699(1)
4.2 Physical testing
700(2)
4.2.1 Laboratory testing and validation of numerical tools
701(1)
4.2.2 Field testing
701(1)
4.3 Rules and standards
702(1)
5 Tidal and ocean current turbines
703(2)
5.1 Development, modelling and testing of tidal current energy converters
703(1)
5.1.1 Device development
703(1)
5.1.2 Numerical modelling and experimental testing
703(1)
5.2 Environmental impact
704(1)
5.2.1 Marine planning
704(1)
5.3 Economic feasibility
704(1)
6 Combined use of ocean space
705(2)
7 Conclusions and recommendations for future work
707(2)
References
709(14)
Report of Committee V.5: Naval vessel design
723(46)
1 Introduction
726(1)
2 Naval class rule development/progress
726(4)
2.1 Introduction
726(1)
2.2 Military structural requirements
727(1)
2.3 Military operational safety loads
728(1)
2.4 Military performance loads
729(1)
2.5 Concluding remarks
729(1)
3 Military loads
730(3)
3.1 Underwater weapon effects
730(1)
3.1.1 Primary shock wave
730(1)
3.1.2 Shock wave reflections and cavitation
730(1)
3.1.3 Bubble dynamics and jetting
731(1)
3.1.4 Numerical modelling
731(1)
3.2 Above water weapons effects
731(2)
3.2.1 External blast
732(1)
3.2.2 Internal blast
732(1)
3.2.3 Bullets and fragments
733(1)
3.3 Maritime improvised explosive devices
733(1)
3.4 Concluding remarks
733(1)
4 Naval service life management
733(6)
4.1 Introduction
733(1)
4.2 Ship service life in context
734(1)
4.2.1 Australian LPA class
734(1)
4.2.2 Australian Adelaide class FFG-07
734(1)
4.2.3 ANZAC class
735(1)
4.3 Determining the remaining life of a warship
735(2)
4.4 Naval structural monitoring programs
737(1)
4.5 Consequence of increasing displacement
738(1)
4.6 Options for enhancing fatigue life of warships
738(1)
5 Naval specific structure design
739(5)
5.1 Structural uniqueness of naval ships
739(1)
5.2 Naval integrated permanent structures
739(3)
5.2.1 Flight decks (vertical)
739(1)
5.2.2 Stern ramps (launch and recovery systems)
740(1)
5.2.3 Blast resistant structures
741(1)
5.3 Naval modular flexible structures
742(2)
5.3.1 Mission bays
742(1)
5.3.2 Weapon modules
743(1)
5.3.3 Advanced enclosed masts/sensor (enclosed aperture stations)
743(1)
5.4 Conclusion
744(1)
6 Naval mast design
744(6)
6.1 Introduction
744(1)
6.2 Types of naval masts
745(1)
6.3 Materials (composite vs. steel vs. aluminum)
746(1)
6.4 Loads
747(1)
6.4.1 Weight of equipment
747(1)
6.4.2 Environmental loadings (includes wind and seaway loads)
747(1)
6.4.3 Thermal
747(1)
6.4.4 Shock and blast
747(1)
6.4.5 Load combinations
747(1)
6.5 Vibration and resonance
748(1)
6.6 Structural analysis and design
748(1)
6.7 Other considerations
749(1)
6.8 Classification society rules for mast design
749(1)
6.9 Conclusions
749(1)
7 Progressive collapse analysis and residual strength assessment
750(4)
7.1 Introduction
750(1)
7.2 Progressive collapse method overview
750(1)
7.3 Development of the progressive collapse method
751(1)
7.4 Residual strength assessment by progressive collapse method
751(1)
7.5 Use of FEA for progressive collapse assessment
752(1)
7.6 Progressive collapse analysis within classification society rules
752(1)
7.7 Discussion and conclusions
753(1)
8 High speed naval craft
754(7)
8.1 Naval applications
754(1)
8.2 Defining a high speed craft
755(2)
8.2.1 Principles
755(1)
8.2.2 Hull form
756(1)
8.2.3 Standards and regulations
756(1)
8.3 Defining operational limitations
757(1)
8.3.1 Operational profile
757(1)
8.3.2 Operational envelope
757(1)
8.4 Accelerations effects
758(1)
8.4.1 Slamming
758(1)
8.4.2 Human factors
758(1)
8.4.3 Fatigue
759(1)
8.5 Material technologies
759(1)
8.5.1 Steel
759(1)
8.5.2 Aluminium
760(1)
8.5.3 Fibre reinforced plastics (FRP)
760(1)
8.6 Unmanned naval high speed craft
760(1)
8.7 Classification society rules
760(1)
8.8 Conclusion
761(1)
9 Benchmark studies
761(3)
9.1 Whipping response of ship
761(10)
9.1.1 Introduction
761(1)
9.1.2 UNDEX bubble phenomena
762(1)
9.1.3 Experimental investigations
763(1)
10 Discussions and conclusions
764(2)
References
766(3)
Report of Committee V.6: Arctic technology
769(38)
1 Introduction
771(1)
1.1 Limitations
772(1)
2 Present design methods
772(18)
2.1 Ships
772(8)
2.1.1 Rules
773(3)
2.1.2 First principles
776(4)
2.2 Offshore structures
780(8)
2.2.1 Rules
783(1)
2.2.2 First principles
784(4)
2.3 Validation methods
788(2)
3 Case 1: Ship transportation in arctic waters-the NSR
790(3)
4 Case 2: Floating offshore structures in arctic waters
793(2)
5 Future perspectives and challenges
795(6)
5.1 Numerical simulations
797(2)
5.2 Ice induced fatigue
799(2)
6 Summary and recommendations
801(1)
Acknowledgments
802(1)
References
802(5)
Report of Committee V.6: Arctic technology annex
807(10)
1 Brief offshore structures code summaries
809(4)
2 Full scale ice load measurement campaigns
813(3)
3 References
816(1)
Report of Committee V.7: Structural longevity
817(48)
1 Introduction
820(1)
1.1 Background & mandate
820(1)
1.2 Relationship with other ISSC committees
820(1)
2 Lifecycle assessment & management for structural longevity
821(2)
2.1 Introduction
821(1)
2.2 The need for lifecycle assessment and management
821(2)
2.3 Conclusions
823(1)
3 Current practice
823(5)
3.1 Introduction
823(1)
3.2 The role of regulators and classification societies
823(1)
3.3 Classification rules and guidance
824(1)
3.4 Commercial shipping vessels
825(1)
3.4.1 International trading vessels
825(1)
3.4.2 High-speed craft (HSC)
826(1)
3.4.3 Vessels operating in inland waterways
826(1)
3.5 Offshore structures
826(1)
3.5.1 Offshore drilling units
826(1)
3.5.2 Floating production storage and offloading (FPSO) units
827(1)
3.5.3 Fixed production platforms
827(1)
3.6 Naval vessels
827(1)
3.7 Conclusions
828(1)
4 Prediction of longevity
828(3)
4.1 Introduction
828(1)
4.2 Prediction of longevity of merchant ships
828(2)
4.2.1 Prediction of corrosion
829(1)
4.2.2 Fatigue strength prediction
829(1)
4.2.3 Buckling prediction
830(1)
4.3 Prediction of longevity of fixed offshore structures
830(1)
4.4 Conclusions
830(1)
5 Prevention & repair of structural failures
831(5)
5.1 Introduction
831(1)
5.2 Prevention of failure - design stage
831(2)
5.2.1 Corrosion protection
831(1)
5.2.2 Material selection
832(1)
5.2.3 Structural design
832(1)
5.3 Prevention of failure - operation
833(3)
5.3.1 Maintenance & inspection
833(1)
5.3.2 Repair and rehabilitation
834(2)
5.4 Conclusions and recommendations
836(1)
6 Inspection methods & techniques
836(3)
6.1 Introduction
836(1)
6.2 Inspection execution
837(1)
6.3 Inspection techniques
837(1)
6.4 Limitations
838(1)
6.5 Conclusions and recommendations
839(1)
7 Sensing technologies
839(6)
7.1 Introduction
839(1)
7.2 Passive systems
840(2)
7.2.1 Strain
840(1)
7.2.2 Acoustic emission
840(1)
7.2.3 Vibrations
841(1)
7.2.4 Crack
841(1)
7.2.5 Corrosion
841(1)
7.2.6 Acceleration
841(1)
7.2.7 Metocean information
842(1)
7.3 Active system
842(2)
7.3.1 Impedance-based methods
842(1)
7.3.2 Lamb wave-propagation methods
843(1)
7.4 Data acquisition and processing
844(1)
7.5 Sensor network, wired and wireless
844(1)
7.6 Maturity of structural hull monitoring systems
844(1)
8 Methodologies for using inspection & sensed data
845(7)
8.1 Introduction
845(1)
8.2 Operational advice
846(2)
8.2.1 Identifying loading to stay within safe operating envelope
846(2)
8.2.2 Quantifying operational loading and changes
848(1)
8.3 Lifecycle management advice
848(3)
8.3.1 Condition based maintenance (CBM)
850(1)
8.3.2 Reliability centered maintenance
850(1)
8.3.3 Reliability based inspections
850(1)
8.4 Design update based on lessons learned from analysis of failures
851(1)
8.5 Discussion
851(1)
8.6 Conclusions
851(1)
9 Life time extension, comparison outside & within the maritime industry
852(4)
9.1 Introduction
852(1)
9.2 Lifetime extension of existing structures
852(2)
9.3 Other industries
854(1)
9.4 Differences in approaches for ships, offshore structures, and other marine structures (ranging from navy to renewable energies)
855(1)
9.5 Conclusions
855(1)
10 Conclusions & recommendations
856(1)
10.1 Conclusions
856(1)
10.2 Recommendations
856(1)
References
857(8)
Report of Committee V.8: Risers and pipelines
865(38)
1 Introduction
867(1)
2 New design concepts
867(4)
2.1 Latest design practice of flexible risers
867(3)
2.1.1 Present application envelope
867(1)
2.1.2 Deep water
868(1)
2.1.3 Shallow water
868(1)
2.1.4 Singing risers
868(1)
2.1.5 Hybrid towers
869(1)
2.2 Latest design practice of pipeline
870(1)
3 Dynamic response investigation review
871(8)
3.1 Riser
871(7)
3.1.1 Wave load induced dynamic response
871(2)
3.1.2 VIV
873(5)
3.2 Free span VIV of pipeline
878(1)
3.2.1 Assessment
878(1)
3.2.2 Mitigation
879(1)
4 Soil-pipeline interaction
879(5)
4.1 Introduction
879(1)
4.2 Soil behavior near pipelines
880(1)
4.3 Pipeline as-laid embedment and riser touchdown
880(1)
4.4 Lateral pipe-soil interaction
881(1)
4.5 Axial pipe-soil interaction
882(1)
4.6 Pipeline stability during trenching and backfilling
882(1)
4.7 Pipeline stability during sediment transport and liquefaction
883(1)
5 Failure modes of risers and pipelines
884(4)
5.1 Steel riser and pipelines
884(2)
5.1.1 Buckling (buckle propagation), collapse and fatigue failure
884(1)
5.1.2 Corrosion
885(1)
5.1.3 Crack
886(1)
5.1.4 Erosion
886(1)
5.2 Flexible pipes
886(2)
5.2.1 Failure modes
886(1)
5.2.2 Design analysis
886(1)
5.2.3 Monitoring
887(1)
6 Installation
888(1)
6.1 Risers
888(1)
6.2 Pipelines
888(1)
7 Inspection and repair
889(4)
7.1 Risers
889(2)
7.2 Pipelines
891(2)
7.2.1 Maintenance
891(1)
7.2.2 Inspection
891(1)
7.2.3 Repair
892(1)
8 Conclusions
893(2)
References
895(8)
Author Index 903
Carlos Guedes Soares, Y. Garbatov