Atjaunināt sīkdatņu piekrišanu

E-grāmata: Short Introduction to Partial Differential Equations

  • Formāts: EPUB+DRM
  • Sērija : CMS/CAIMS Books in Mathematics 11
  • Izdošanas datums: 30-Dec-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031395246
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : CMS/CAIMS Books in Mathematics 11
  • Izdošanas datums: 30-Dec-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031395246
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a short introduction to partial differential equations (PDEs). It is primarily addressed to graduate students and researchers, who are new to PDEs. The book offers a user-friendly approach to the analysis of PDEs, by combining elementary techniques and fundamental modern methods.





 





The author focuses the analysis on four prototypes of PDEs, and presents two approaches for each of them. The first approach consists of the method of analytical and classical solutions, and the second approach consists of the method of weak (variational) solutions.





 





In connection with the approach of weak solutions, the book also provides an introduction to distributions, Fourier transform and Sobolev spaces. The book ends with an appendix chapter, which complements the previous chapters with proofs, examples and remarks.





 





This book can be used for an intense one-semester, or normal two-semester, PDE course. The reader isexpected to have knowledge of linear algebra and of differential equations, a good background in real and complex calculus and a modest background in analysis and topology. The book has many examples, which help to better understand the concepts, highlight the key ideas and emphasize the sharpness of results, as well as a section of problems at the end of each chapter.

Recenzijas

The book will serve as a guide for researchers by helping them with essential results for progressing their research. There are many examples, which will certainly help a reader in grasping the key ideas. The book gives good insight into the fundamental key concepts, results and techniques and is therefore useful equally for beginners, veterans and researchers. (Urvashi Arora, Mathematical Reviews, February, 2025) 

1 Notations and review.- 2 Partial differential equations.- 3 First
order PDEs. Classical and weak solutions.- 4 Second-order linear elliptic
PDEs. maximum principle and classical solutions - 5 Distributions.- 6 Sobolev
spaces.- 7 Second order linear elliptic PDEs. Weak solutions.- 8 Second order
parabolic and hyperbolic PDEs.- 9 Annex.
The author is a professor of Mathematics at University of Ottawa, Canada (since 2002). He holds a PhD in Mathematics from University Henri Poincare, Nancy, France, 1997. Before joining University of Ottawa in 2002, he had held postdoctoral positions at INRIA France and PIMS, UBC, Vancouver, Canada. The author's main research area are Shape Optimization and Partial Differential Equations, as they are integral part of his research. The author has taught PDEs at University of Ottawa for many years, and this book represents this teaching experience.