Atjaunināt sīkdatņu piekrišanu

E-grāmata: Signal Conditioning: An Introduction to Continuous Wave Communication and Signal Processing

  • Formāts: PDF+DRM
  • Sērija : Signals and Communication Technology
  • Izdošanas datums: 27-Apr-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642288180
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Signals and Communication Technology
  • Izdošanas datums: 27-Apr-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642288180

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

“Signal Conditioning” is a comprehensive introduction to electronic signal processing. The book presents the mathematical basics including the implications of various transformed domain representations in signal synthesis and analysis in an understandable and lucid fashion and illustrates the theory through many applications and examples from communication systems. The ease to learn is supported by well-chosen exercises which give readers the flavor of the subject. Supplementary electronic material is available on http://extras.springer.com including MATLAB codes illuminating applications in the domain of one dimensional electrical signal processing, image processing, and speech processing. The book is an introduction for students with a basic understanding in engineering or natural sciences.

This comprehensive introduction to signal processing presents the basic mathematics in an accessible and lucid fashion, illustrating the theory with numerous applications and examples and featuring online resources including MATLAB coding for exemplars.
1 Preview and Introduction
1(22)
1.1 Definition of Signal
1(1)
1.2 Time-Value Definition of Signals: Analog and Digital
2(4)
1.2.1 Continuous Time Continuous Valued Signal
4(1)
1.2.2 Discrete Time Continuous Valued Signal
4(1)
1.2.3 Discrete Time Discrete Valued Signal
5(1)
1.3 Signal Conditioning
6(2)
1.3.1 Filtering
6(1)
1.3.2 Amplifying
6(1)
1.3.3 Isolation
6(1)
1.3.4 Modulation
7(1)
1.4 Delayed and Advanced Signal
8(1)
1.5 Even Signal and Odd Signal
8(3)
1.5.1 Even and Odd Components of a Signal
10(1)
1.6 Convolution
11(7)
1.6.1 Transformed Domain Simplicity
15(1)
1.6.2 2D Convolution: Convolution in Image Processing
16(2)
1.7 Correlation
18(5)
References
19(4)
Part I Continuous Wave Communication and Analog Signal Conditioning
2 Fourier Series
23(28)
2.1 Introduction
23(1)
2.2 Statement and Interpretation
24(2)
2.3 Fourier Coefficients
26(9)
2.3.1 Component of a Vector
26(2)
2.3.2 Component of a Signal
28(1)
2.3.3 Coefficients of Trigonometric Fourier Series
29(5)
2.3.4 Physical Existences of the Coefficients
34(1)
2.4 Even and Odd Symmetry
35(3)
2.5 Compact Fourier Series
38(3)
2.6 Dirichlet Conditions
41(1)
2.7 Exponential Fourier Series
42(2)
2.8 Parseval's Theorem for Power
44(1)
2.9 Phase Congruency: Application of Fourier Series in 1D and 2D Signal Processing (Image Processing)
45(6)
References
50(1)
3 Fourier Transform
51(22)
3.1 Introduction
51(1)
3.2 Mathematical Interpretation
52(3)
3.3 Significance of Oddness and Evenness in Complex Plane
55(2)
3.4 Cosine and Sine Transform
57(5)
3.4.1 Interpretation of the Formula
61(1)
3.5 Properties of Fourier Transform
62(11)
3.5.1 Time-Frequency Duality
63(1)
3.5.2 Scaling Property
63(2)
3.5.3 Time Shifting Property
65(4)
3.5.4 Frequency Shifting Property
69(1)
3.5.5 Transformed Convolution Property
70(3)
3.6 System Realization: Ideal and Practical Filter
73(4)
3.6.1 System Causality
73(1)
3.6.2 Causality of Ideal Filter
74(1)
3.7 Parseval's Theorem for Energy
75(2)
References
76(1)
4 Amplitude Modulation
77(38)
4.1 Introduction
77(1)
4.2 Modulation and Its Measure: Global Definitions
78(2)
4.2.1 Modulation
78(1)
4.2.2 Modulation Index
79(1)
4.3 Math Model of AM
80(2)
4.4 Transmission Power and Transmission Efficiency
82(1)
4.5 Double Side Band Suppressed Carrier (DSB-SC) Modulation
83(2)
4.6 Balanced Modulator
85(5)
4.6.1 Non-linear Amplifier
85(1)
4.6.2 Configuration 1
86(2)
4.6.3 Configuration 2
88(2)
4.6.4 Why "Balanced" Modulator?
90(1)
4.7 Ring Modulator
90(3)
4.8 Phasor Diagram
93(2)
4.8.1 Observed Properties of AM
95(1)
4.9 Envelope Detector
95(3)
4.10 Quadrature Amplitude Modulation
98(2)
4.10.1 QAM Transmitter
98(1)
4.10.2 QAM Receiver
99(1)
4.11 Radio Receivers
100(10)
4.11.1 Tuned Radio Frequency (TRF) Receiver
100(2)
4.11.2 Super Heterodyne Receiver
102(2)
4.11.3 Receiver Characteristics
104(2)
4.11.4 Tuned Circuit
106(2)
4.11.5 Image Frequency
108(2)
4.12 MATLAB Codes
110(5)
4.12.1 AM
110(1)
4.12.2 DSB-SC
111(2)
4.12.3 Ring Modulator
113(1)
References
114(1)
5 Angle Modulation Technology
115(32)
5.1 Introduction
115(1)
5.2 Concept of Instantaneous Frequency
115(1)
5.3 Mathematical Model
116(2)
5.4 FM and PM are Interchangeable
118(6)
5.4.1 Example 1
119(2)
5.4.2 Example 2
121(3)
5.5 Modulation Index for FM and PM
124(1)
5.6 Bandwidth of FM
125(3)
5.7 Phasor Diagram
128(3)
5.7.1 Observed Properties of NBFM
130(1)
5.8 NBFM and NBPM Generation: Indirect Method
131(1)
5.9 Wide Band FM Generation: Indirect Method of Armstrong
132(1)
5.10 Direct Method of FM Generation: Using VCO
133(2)
5.11 Indirect Method of FM Demodulation
135(2)
5.11.1 Slope Detector
135(1)
5.11.2 Dual Slope Detector
136(1)
5.12 Stereophonic FM
137(4)
5.13 Matlab Programs
141(6)
5.13.1 Bessel Function of First Kind
141(1)
5.13.2 FM and PM Signal Generation
142(1)
References
143(4)
Part II Discrete Signal Conditioning: 1D & 2D
6 Discrete Time Transformations: DTFS and DTFT
147(12)
6.1 Introduction
147(1)
6.2 Concept of Sampling
147(5)
6.2.1 Sampling Theorem
149(3)
6.3 Aliasing
152(1)
6.4 Discrete Time Fourier Series
153(2)
6.5 Discrete Time Fourier Transform
155(3)
6.6 MATLAB Programs
158(1)
6.6.1 Aliasing
158(1)
References
158(1)
7 Discrete Fourier Transform
159(34)
7.1 Introduction
159(1)
7.2 The DFT Algorithm
159(2)
7.3 Twiddle Factor
161(8)
7.3.1 Properties
164(5)
7.4 Properties of DFT
169(7)
7.4.1 Periodicity
170(1)
7.4.2 Linearity
170(1)
7.4.3 Circular Shift of a Sequence
170(3)
7.4.4 Time Reversal of a Sequence
173(1)
7.4.5 Circular Frequency Shift
174(1)
7.4.6 Complex Conjugate Property
174(1)
7.4.7 Circular Convolution
175(1)
7.4.8 Circular Correlation
175(1)
7.4.9 Multiplication Between Two Sequences
176(1)
7.4.10 Perseval's Theorem
176(1)
7.6 Two Dimensional (2D) DFT
176(8)
7.5.1 Physical Interpretation: 2D-FT
179(2)
7.5.2 Space-Frequency Expansion-Contraction in Image
181(3)
7.6 Case Studies
184(2)
7.6.1 Importance of Phase Over Amplitude in DFT Spectrum
184(1)
7.6.2 Image Filtering
185(1)
7.7 Computational Complexity
186(2)
7.7.1 Considering Real and Complex Operations
187(1)
7.7.2 Considering Only Complex Operations
187(1)
7.8 MATLAB Codes
188(5)
7.8.1 Concept of Frequency in Two Dimensional Signal (Image)
188(1)
7.8.2 Importance of Phase Over Amplitude in DFT Spectrum
189(1)
7.8.3 Image Filtering
190(2)
References
192(1)
8 Fast Fourier Transform
193(24)
8.1 Introduction
193(1)
8.2 The FFT Algorithm: Radix 2---Decimation is Time
193(5)
8.2.1 Bit Reversal
195(2)
8.2.2 Steps of Doing Radix-2 DIT-FFT
197(1)
8.3 Decimation in Frequency FFT (DIF-FFT) Algorithm
198(5)
8.3.1 Steps of Doing Radix-2 DIF-FFT
199(4)
8.4 Computational Complexity
203(1)
8.4.1 Number of Complex Multiplication
203(1)
8.4.2 Number of Complex Addition
204(1)
8.5 Circular Convolution
204(4)
8.5.1 Concentric Circle Method
205(1)
8.5.2 Matrix Multiplication Method
205(3)
8.6 Case Studies
208(6)
8.6.1 FFT Over FFT
208(5)
8.6.2 Multiplication Using FFT
213(1)
8.7 MATLAB Codes
214(3)
8.7.1 FFT Over FFT
214(1)
8.7.2 Multiplication Using FFT
215(1)
References
215(2)
9 Z-Transform
217(26)
9.1 Introduction
217(1)
9.2 Laplace Transform and S-Plane
217(3)
9.2.1 Stability Criteria S-Plane
219(1)
9.3 Algorithm of Z-Transform
220(3)
9.3.1 Physical Significance of Z-Transform
222(1)
9.3.2 Utility of Z-Transform
222(1)
9.4 Region of Convergence (RoC) and Its Properties
223(1)
9.5 RoC of Finite Duration Sequence
223(3)
9.5.1 Causal Sequence
223(1)
9.5.2 Anti-Causal Sequence
224(1)
9.5.3 Double Sided Sequence
225(1)
9.6 Properties of Z-Transform
226(6)
9.6.1 Intersection of RoC
226(1)
9.6.2 Linearity
227(1)
9.6.3 Time Shift or Translation
228(1)
9.6.4 Multiplication by an Exponential Sequence
229(1)
9.6.5 Time Reversal
230(1)
9.6.6 Differentiation of X(z)
231(1)
9.7 System Representation by Z-Transform
232(2)
9.7.1 Solution of Difference Equations Using Z-Transform
233(1)
9.8 Poles and Zeros
234(1)
9.9 Stability Criteria
235(1)
9.9.1 Stability Theorem
235(1)
9.10 Bounded Input Bounded Output Stability
236(2)
9.11 Relationship Between S and Z-Plane
238(1)
9.12 Inverse Z-Transform
239(4)
9.12.1 Long Division Method
239(2)
9.12.2 Convolution Method
241(1)
References
242(1)
10 Wavelets: Multi-Resolution Signal Processing
243(32)
10.1 Introduction
243(1)
10.2 Short Time Fourier Transform
244(4)
10.2.1 Continuous-Time STFT
245(1)
10.2.2 Discrete-Time STFT
246(1)
10.2.3 Spectrogram
247(1)
10.2.4 Limitation
247(1)
10.3 Wavelet Function and Scaling Function
248(4)
10.4 Wavelet Series
252(2)
10.5 Discrete Wavelet Transform and Multi-Resolution Analysis
254(5)
10.5.1 Analysis Filter Bank
257(1)
10.5.2 Synthesis Filter Bank
258(1)
10.6 Image Decomposition Using DWT
259(3)
10.6.1 Concept of 2D Signal Decomposition Using Analysis Filter
259(1)
10.6.2 DWT on Images
260(2)
10.7 Image Compression Using DWT: Embedded Zero-Tree Wavelet Encoding
262(7)
10.7.1 Relationship Between Decomposed Sub-Bands
263(1)
10.7.2 Successive Approximation Quantization in EZW
263(1)
10.7.3 EZW Encoding Algorithm
264(2)
10.7.4 Image Compression Using EZW: An Example
266(1)
10.7.5 Experimental Results of Image Compression Using EZW
267(2)
10.8 Matlab Programs
269(6)
10.8.1 Haar Scaling and Wavelet Function
269(1)
10.8.2 Wavelet Series Expansion
270(2)
10.8.3 Wavelet Decomposition of Image (4 level)
272(1)
10.8.4 Image Compression by EZW Encoding
272(2)
References
274(1)
11 Steganography: Secret Data Hiding in Multimedia
275(22)
11.1 Introduction
275(1)
11.2 Steganography and Steganalysis
275(1)
11.3 Plaintext Steganography
276(4)
11.3.1 Patterned Position in a Sentence
277(1)
11.3.2 Invisible ASCIIs
278(2)
11.4 Steganography on Images
280(6)
11.4.1 LSB Steganography
281(2)
11.4.2 DCT and DWT Based Steganography
283(2)
11.4.3 Palette Based Steganography and PoV
285(1)
11.5 Audio and Video Steganography
286(4)
11.5.1 LSB Coding
287(1)
11.5.2 Spread Spectrum Technique
287(2)
11.5.3 Echo Hiding
289(1)
11.6 IP Datagram Steganography
290(2)
11.6.1 Covert Channel Communication Using `Flags'
291(1)
11.6.2 Covert Channel Communication Using `Identification' Field
292(1)
11.6.3 Covert Channel Communication Using ISN (Initial Sequence Number) Field
292(1)
11.7 Steganography Capacity: A Measure of Security
292(5)
References
295(2)
Appendix: Frequently Used MATLAB Functions 297(12)
Index 309