nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
Part I: General Topics.
1. An Overview of 60 Years of Progress on Signal/Image Processing for Remote Sensing.
2. Proven Approaches of Using Innovative High-Performance Computing Architectures in Remote Sensing. Part II: Signal Processing for Remote Sensing.
3. Machine Learning Techniques for Geophysical Parameter Retrievals.
4. Subsurface Inverse-Profiling and Imaging Using Stochastic Optimization Techniques.
5. Close and Remote GPR Surveys via Microwave Tomography, State of Art and Perspectives.
6. Polarimetric SAR Signatures of Complex Scene - A Simulation Study.
7. Machine Learning for Arctic Sea Physical Properties Estimation Using Dual-Polarimetric SAR Data.
8. Riemannian Clustering of Polarimetric SAR Data Using the Polar Decomposition.
9. Seismic Velocity Picking Using Hopfield Neural Network.
10. Expanded Radial Basis Function Network with Proof of Hidden Node Number by Recurrence Relation for Well Log Data Inversion. Part III: Image Processing for Remote Sensing.
11. Convolutional Neural Networks Meet Markov Random Fields for Semantic Segmentation of Remote Sensing Images.
12. Deep Learning Methods for Satellite Image Super Resolution.
13. Machine learning in Remote Sensing.
14. Robust Training of Deep Neural Networks with Weak Labeled Data.
15. Sementic Segmentation with otbtf and keras.
16. Performance of a Diffusion Model for Instance Segmentation in Remote Sensing Imagery.
17. Land Cover Classification Using Attention Based Multi Model Image Fusion: An Explainable Analysis
18. FPGA Compressive Sensing Method Applied to Hyperspectral Imagery.
19. Large-Scale Fine-Grained Change Detection from Multisensory Satellite Images.
20. Change Detection on Graphs: Exploiting Graph Structure from Bi-temporal Satellite Imagery.
21. Target Detection in Hyperspectral Imaging Using Neural Networks.