|
1 Dual Work Function Silicon Nanowire MOS Transistors |
|
|
1 | (26) |
|
|
1 | (12) |
|
1.1.1 Introduction to Design Process |
|
|
1 | (2) |
|
1.1.2 The Criteria for Low Static Power Dissipation |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.1.4 Physical Models Used in Device Simulations |
|
|
4 | (1) |
|
1.1.5 Determining Metal Gate Work Function Values for NMOS and PMOS Transistors |
|
|
5 | (1) |
|
1.1.6 The OFF Current Requirement |
|
|
6 | (1) |
|
1.1.7 Intrinsic Transient Time |
|
|
6 | (3) |
|
1.1.8 DC Device Characteristics |
|
|
9 | (4) |
|
1.2 Circuit Simulations and Performance |
|
|
13 | (10) |
|
1.2.1 Parasitic Extraction and Post-layout Issues |
|
|
13 | (2) |
|
1.2.2 Transient Performance |
|
|
15 | (2) |
|
|
17 | (1) |
|
1.2.4 Cell Layout and Gate Area Estimations |
|
|
18 | (2) |
|
|
20 | (3) |
|
|
23 | (4) |
|
|
24 | (3) |
|
2 Single Work Function Silicon Nanowire MOS Transistors |
|
|
27 | (16) |
|
|
27 | (6) |
|
|
27 | (1) |
|
2.1.2 The Criteria for Low Static Power Dissipation |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.1.4 Physical Models Used in Device Simulations |
|
|
28 | (1) |
|
2.1.5 Determining a Single Metal Gate Work Function |
|
|
29 | (1) |
|
2.1.6 The OFF Current Requirement for the Design |
|
|
29 | (2) |
|
2.1.7 Transistor Transient Characteristics: Intrinsic Transient Time |
|
|
31 | (1) |
|
2.1.8 DC Characteristics of the Selected NMOS and PMOS Transistors |
|
|
32 | (1) |
|
|
33 | (6) |
|
2.2.1 Parasitic Extraction and Post-layout Issues |
|
|
33 | (1) |
|
2.2.2 Transient Performance |
|
|
34 | (2) |
|
2.2.3 Dynamic Power Dissipation |
|
|
36 | (1) |
|
2.2.4 Cell Layout Area Estimations |
|
|
37 | (2) |
|
2.2.5 Full Adder Comparison |
|
|
39 | (1) |
|
|
39 | (4) |
|
|
40 | (3) |
|
3 SPICE Modeling for Analog and Digital Applications |
|
|
43 | (18) |
|
3.1 BSIMSOI Device Parameters |
|
|
43 | (16) |
|
|
43 | (1) |
|
|
44 | (5) |
|
3.1.3 Intrinsic Modeling and Parasitic Extraction |
|
|
49 | (6) |
|
3.1.4 Extrinsic Modeling and Parasitic Extraction |
|
|
55 | (4) |
|
|
59 | (2) |
|
|
59 | (2) |
|
4 High-Speed Analog Applications |
|
|
61 | (22) |
|
|
61 | (1) |
|
4.2 Brief Description of Transistor Design and Modeling |
|
|
61 | (1) |
|
4.3 Single-Stage CMOS SNT Amplifier |
|
|
62 | (4) |
|
4.3.1 The CMOS Amplifier Design |
|
|
62 | (1) |
|
4.3.2 The Characteristics of the CMOS Amplifier |
|
|
63 | (3) |
|
4.4 Differential SNT Amplifier |
|
|
66 | (3) |
|
4.4.1 A Single-Stage Differential Amplifier Design |
|
|
66 | (1) |
|
4.4.2 The Characteristics of the Differential Amplifier |
|
|
67 | (2) |
|
4.5 Multi-stage SNT Operational Amplifier |
|
|
69 | (11) |
|
4.5.1 A Two-Stage Operational Amplifier Design |
|
|
69 | (8) |
|
4.5.2 Characteristics of the Operational Amplifier |
|
|
77 | (3) |
|
|
80 | (3) |
|
|
81 | (2) |
|
5 Radio Frequency (RF) Applications |
|
|
83 | (24) |
|
|
83 | (1) |
|
5.2 Brief Description of Transistor Design and Modeling |
|
|
83 | (1) |
|
5.3 RF Receiver Front End |
|
|
84 | (10) |
|
|
84 | (1) |
|
5.3.2 LC Tank Voltage-Controlled Oscillator (VCO) |
|
|
84 | (2) |
|
|
86 | (1) |
|
5.3.4 Low Noise Amplifier (LNA) |
|
|
87 | (1) |
|
5.3.5 LNA-Mixer-VCO (LMV) Cell |
|
|
88 | (1) |
|
5.3.6 LC Tank Oscillator as a Mixer |
|
|
89 | (1) |
|
5.3.7 Bias Splitting Self-Oscillating Mixer (SOM) |
|
|
89 | (4) |
|
5.3.8 Design of Double-Switching Self-Oscillating Degeneration LMV Cell Using SNTs |
|
|
93 | (1) |
|
5.4 Variable Gain Amplifier (VGA) |
|
|
94 | (10) |
|
5.4.1 Introduction to VGA |
|
|
94 | (2) |
|
5.4.2 Current-Mode Topology |
|
|
96 | (3) |
|
5.4.3 Voltage-Mode Topology |
|
|
99 | (5) |
|
|
104 | (3) |
|
|
105 | (2) |
|
6 SRAM Mega Cell Design for Digital Applications |
|
|
107 | (14) |
|
|
107 | (1) |
|
6.2 Brief Description of Transistor Design and Modeling |
|
|
107 | (1) |
|
|
108 | (8) |
|
|
108 | (1) |
|
|
108 | (3) |
|
|
111 | (1) |
|
6.3.4 Self-Timed Circuits |
|
|
112 | (4) |
|
|
116 | (4) |
|
6.4.1 Parasitic Layout Extraction |
|
|
116 | (1) |
|
6.4.2 Read and Write Access Times |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
7 Field-Programmable-Gate-Array (FPGA) |
|
|
121 | (14) |
|
|
121 | (1) |
|
7.2 Brief Description of Transistor Design and Modeling |
|
|
121 | (1) |
|
|
122 | (7) |
|
7.3.1 Cluster Architecture |
|
|
122 | (1) |
|
7.3.2 4-Input Look-Up-Table (4-LUT) |
|
|
123 | (3) |
|
7.3.3 An Example: A 3-bit Carry-Ripple Adder (CRA) |
|
|
126 | (3) |
|
7.4 FPGA Circuit Characteristics |
|
|
129 | (4) |
|
7.4.1 4-LUT Worst-Case Propagation Delays |
|
|
129 | (1) |
|
7.4.2 Intercluster Propagation Delays |
|
|
129 | (2) |
|
7.4.3 4-LUT Power Dissipation |
|
|
131 | (1) |
|
7.4.4 Flip-Flop Characteristics |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
133 | (2) |
|
8 Integrate-and-Fire Spiking (IFS) Neuron |
|
|
135 | (10) |
|
|
135 | (1) |
|
8.2 Brief Description of Transistor Design and Modeling |
|
|
136 | (1) |
|
|
136 | (7) |
|
8.3.1 IFS Neuron Firing Principle |
|
|
136 | (1) |
|
|
136 | (5) |
|
8.3.3 Transient Response and Power Dissipation |
|
|
141 | (1) |
|
8.3.4 IFS Neuron Cell Layout |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
144 | (1) |
|
9 Direct Sequence Spread Spectrum (DSSS) Baseband Transmitter |
|
|
145 | (16) |
|
|
145 | (1) |
|
9.2 Brief Description of Transistor Design and Modeling |
|
|
145 | (1) |
|
9.3 DSSS Baseband Transmitter |
|
|
146 | (5) |
|
9.3.1 Overall Operation of the Transmitter |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
148 | (3) |
|
9.3.4 Binary Mapper and Bit Multipliers |
|
|
151 | (1) |
|
|
151 | (8) |
|
9.4.1 Clock Generation Circuits |
|
|
151 | (1) |
|
9.4.2 Maximum Critical Paths |
|
|
151 | (3) |
|
9.4.3 Minimum Critical Paths |
|
|
154 | (1) |
|
9.4.4 Parasitic RC Extraction |
|
|
154 | (2) |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
159 | (2) |
|
|
159 | (2) |
Index |
|
161 | |