Atjaunināt sīkdatņu piekrišanu

E-grāmata: Simplifying Medical Ultrasound: 5th International Workshop, ASMUS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15186
  • Izdošanas datums: 04-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031736476
  • Formāts - EPUB+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15186
  • Izdošanas datums: 04-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031736476

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 5th International Workshop on Simplifying Medical Ultrasound, ASMUS 2024, held in conjunction with MICCAI 2024, the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference took place in Marrakesh, Morocco on October 6, 2024.





The 21 full papers presented in this book were carefully reviewed and selected from 34 submissions. They were organized in topical sections as follows: Image Acquisition, Synthesis and Enhancement; Tracking, Registration and Image-guided Interventions; Segmentation; and Classification and Detection.
.- Image Acquisition, Synthesis and Enhancement.

.- Unsupervised Physics-Inspired Shear Wave Speed Estimation in Ultrasound
Elastography.

.- Simplifying Prostate Elastography Using Micro-Ultrasound and Transfer
Function Imaging.

.- Do High-Performance Image-to-Image Translation Networks Enable the
Discovery of Radiomic Features? Application to MRI Synthesis from Ultrasound
in Prostate Cancer.

.- PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution
Enhancement.

.- Tracking, Registration and Image-guided Interventions.

.- PIPsUS: Self-Supervised Point Tracking in Ultrasound.

.- Structure-aware World Model for Probe Guidance via Large-scale
Selfsupervised Pre-train.

.- An Evaluation of Low-Cost Hardware on 3D Ultrasound Reconstruction
Accuracy.

.- Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative
Ultrasound.

.- Automatic facial axes standardization of 3D fetal ultrasound images.

.- Segmentation.

.- C-TRUS: A Novel Dataset and Initial Benchmark For Colon Wall Segmentation
in Transabdominal Ultrasound.

.- Label Dropout: Improved Deep Learning Echocardiography Segmentation Using
Multiple Datasets With Domain Shift and Partial Labelling.

.- Introducing Anatomical Constraints in Mitral Annulus Segmentation in
Transesophageal Echocardiography.

.- Interactive Segmentation Model for Placenta Segmentation from 3D
Ultrasound Images.

.- Enhanced Uncertainty Estimation in Ultrasound Image Segmentation with
MSU-Net.

.- Classification and Detection.

.- Multi-Site Class-Incremental Learning with Weighted Experts in
Echocardiography.

.- Masked autoencoders for medical ultrasound videos using ROI-aware
masking.

.- Uncertainty-based Multi-modal Learning for Myocardial Infarction Diagnosis
using Echocardiography and Electrocardiograms.

.- Fetal Ultrasound Video Representation Learning using Contrastive Rubiks
Cube Recovery.

.- LoRIS - Weakly-supervised Anomaly Detection for Ultrasound Images.

.- Unsupervised Detection of Fetal Brain Anomalies using Denoising Diffusion
Models.

.- Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain
Ultrasound.