Preface |
|
ix | |
|
|
1 | (4) |
|
|
3 | (2) |
|
|
5 | (32) |
|
|
5 | (1) |
|
|
6 | (1) |
|
Conditional Probability and Independence |
|
|
7 | (1) |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (2) |
|
Chebyshev's Inequality and the Laws of Large Numbers |
|
|
15 | (2) |
|
Some Discrete Random Variables |
|
|
17 | (5) |
|
Binomial Random Variables |
|
|
17 | (1) |
|
|
18 | (2) |
|
Geometric Random Variables |
|
|
20 | (1) |
|
The Negative Binomial Random Variable |
|
|
20 | (1) |
|
Hypergeometric Random Variables |
|
|
21 | (1) |
|
Continuous Random Variables |
|
|
22 | (8) |
|
Uniformly Distributed Random Variables |
|
|
22 | (1) |
|
|
23 | (2) |
|
Exponential Random Variables |
|
|
25 | (2) |
|
The Poisson Process and Gamma Random Variables |
|
|
27 | (2) |
|
The Nonhomogeneous Poisson Process |
|
|
29 | (1) |
|
Conditional Expectation and Conditional Variance |
|
|
30 | (7) |
|
|
32 | (4) |
|
|
36 | (1) |
|
|
37 | (8) |
|
|
37 | (1) |
|
Pseudorandom Number Generation |
|
|
37 | (1) |
|
Using Random Numbers to Evaluate Integrals |
|
|
38 | (7) |
|
|
42 | (2) |
|
|
44 | (1) |
|
Generating Discrete Random Variables |
|
|
45 | (18) |
|
The Inverse Transform Method |
|
|
45 | (5) |
|
Generating a Poisson Random Variable |
|
|
50 | (2) |
|
Generating Binomial Random Variables |
|
|
52 | (1) |
|
The Acceptance-Rejection Technique |
|
|
53 | (2) |
|
|
55 | (1) |
|
Generating Random Vectors |
|
|
56 | (7) |
|
|
57 | (6) |
|
Generating Continuous Random Variables |
|
|
63 | (24) |
|
|
63 | (1) |
|
The Inverse Transform Algorithm |
|
|
63 | (4) |
|
|
67 | (6) |
|
The Polar Method for Generating Normal Random Variables |
|
|
73 | (3) |
|
Generating a Poisson Process |
|
|
76 | (1) |
|
Generating a Nonhomogeneous Poisson Process |
|
|
77 | (10) |
|
|
81 | (4) |
|
|
85 | (2) |
|
The Discrete Event Simulation Approach |
|
|
87 | (22) |
|
|
87 | (1) |
|
Simulation via Discrete Events |
|
|
87 | (1) |
|
A Single-Server Queueing System |
|
|
88 | (3) |
|
A Queueing System with Two Servers in Series |
|
|
91 | (2) |
|
A Queueing System with Two Parallel Servers |
|
|
93 | (3) |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
99 | (3) |
|
Exercising a Stock Option |
|
|
102 | (1) |
|
Verification of the Simulation Model |
|
|
103 | (6) |
|
|
105 | (3) |
|
|
108 | (1) |
|
Statistical Analysis of Simulated Data |
|
|
109 | (20) |
|
|
109 | (1) |
|
The Sample Mean and Sample Variance |
|
|
109 | (6) |
|
Interval Estimates of a Population Mean |
|
|
115 | (3) |
|
The Bootstrapping Technique for Estimating Mean Square Errors |
|
|
118 | (11) |
|
|
124 | (3) |
|
|
127 | (2) |
|
Variance Reduction Techniques |
|
|
129 | (68) |
|
|
129 | (2) |
|
The Use of Antithetic Variables |
|
|
131 | (8) |
|
The Use of Control Variates |
|
|
139 | (8) |
|
Variance Reduction by Conditioning |
|
|
147 | (10) |
|
Estimating the Expected Number of Renewals by Time t |
|
|
155 | (2) |
|
|
157 | (9) |
|
|
166 | (14) |
|
Using Common Random Numbers |
|
|
180 | (1) |
|
Evaluating an Exotic Option |
|
|
181 | (16) |
|
Appendix: Verification of Antithetic Variable Approach When Estimating the Expected Value of Monotone Functions |
|
|
185 | (3) |
|
|
188 | (7) |
|
|
195 | (2) |
|
Statistical Validation Techniques |
|
|
197 | (26) |
|
|
197 | (1) |
|
|
197 | (8) |
|
The Chi-Square Goodness of Fit Test for Discrete Data |
|
|
198 | (2) |
|
The Kolmogorov-Smirnov Test for Continuous Data |
|
|
200 | (5) |
|
Goodness of Fit Tests When Some Parameters Are Unspecified |
|
|
205 | (3) |
|
|
205 | (3) |
|
|
208 | (1) |
|
|
208 | (7) |
|
Validating the Assumption of a Nonhomogeneous Poisson Process |
|
|
215 | (8) |
|
|
219 | (2) |
|
|
221 | (2) |
|
Markov Chain Monte Carlo Methods |
|
|
223 | (28) |
|
|
223 | (1) |
|
|
223 | (3) |
|
The Hastings-Metropolis Algorithm |
|
|
226 | (2) |
|
|
228 | (11) |
|
|
239 | (3) |
|
The Sampling Importance Resampling Algorithm |
|
|
242 | (9) |
|
|
246 | (3) |
|
|
249 | (2) |
|
|
251 | (21) |
|
|
251 | (1) |
|
The Alias Method for Generating Discrete Random Variables |
|
|
251 | (4) |
|
Simulating a Two-Dimensional Poisson Process |
|
|
255 | (3) |
|
Simulation Applications of an Identity for Sums of Bernoulli Random Variables |
|
|
258 | (4) |
|
Estimating the Distribution and the Mean of the First Passage Time of a Markov Chain |
|
|
262 | (5) |
|
|
267 | (5) |
|
|
269 | (2) |
|
|
271 | (1) |
Index |
|
272 | |