Preface |
|
ix | |
|
|
1 | (4) |
|
|
3 | (2) |
|
2 Elements of Probability |
|
|
5 | (34) |
|
2.1 Sample Space and Events |
|
|
5 | (1) |
|
2.2 Axioms of Probability |
|
|
6 | (1) |
|
2.3 Conditional Probability and Independence |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (3) |
|
|
14 | (2) |
|
2.7 Chebyshev's Inequality and the Laws of Large Numbers |
|
|
16 | (2) |
|
2.8 Some Discrete Random Variables |
|
|
18 | (5) |
|
2.9 Continuous Random Variables |
|
|
23 | (8) |
|
2.10 Conditional Expectation and Conditional Variance |
|
|
31 | (8) |
|
|
33 | (5) |
|
|
38 | (1) |
|
|
39 | (8) |
|
|
39 | (1) |
|
3.1 Pseudorandom Number Generation |
|
|
39 | (1) |
|
3.2 Using Random Numbers to Evaluate Integrals |
|
|
40 | (7) |
|
|
44 | (1) |
|
|
45 | (2) |
|
4 Generating Discrete Random Variables |
|
|
47 | (22) |
|
4.1 The Inverse Transform Method |
|
|
47 | (7) |
|
4.2 Generating a Poisson Random Variable |
|
|
54 | (1) |
|
4.3 Generating Binomial Random Variables |
|
|
55 | (1) |
|
4.4 The Acceptance-Rejection Technique |
|
|
56 | (2) |
|
4.5 The Composition Approach |
|
|
58 | (2) |
|
4.6 The Alias Method for Generating Discrete Random Variables |
|
|
60 | (3) |
|
4.7 Generating Random Vectors |
|
|
63 | (6) |
|
|
64 | (5) |
|
5 Generating Continuous Random Variables |
|
|
69 | (28) |
|
|
69 | (1) |
|
5.1 The Inverse Transform Algorithm |
|
|
69 | (4) |
|
|
73 | (7) |
|
5.3 The Polar Method for Generating Normal Random Variables |
|
|
80 | (3) |
|
5.4 Generating a Poisson Process |
|
|
83 | (2) |
|
5.5 Generating a Nonhomogeneous Poisson Process |
|
|
85 | (3) |
|
5.6 Simulating a Two-Dimensional Poisson Process |
|
|
88 | (9) |
|
|
91 | (4) |
|
|
95 | (2) |
|
6 The Multivariate Normal Distribution and Copulas |
|
|
97 | (14) |
|
|
97 | (1) |
|
6.1 The Multivariate Normal |
|
|
97 | (2) |
|
6.2 Generating a Multivariate Normal Random Vector |
|
|
99 | (3) |
|
|
102 | (5) |
|
6.4 Generating Variables from Copula Models |
|
|
107 | (4) |
|
|
108 | (3) |
|
7 The Discrete Event Simulation Approach |
|
|
111 | (24) |
|
|
111 | (1) |
|
7.1 Simulation via Discrete Events |
|
|
111 | (1) |
|
7.2 A Single-Server Queueing System |
|
|
112 | (3) |
|
7.3 A Queueing System with Two Servers in Series |
|
|
115 | (2) |
|
7.4 A Queueing System with Two Parallel Servers |
|
|
117 | (3) |
|
|
120 | (2) |
|
7.6 An Insurance Risk Model |
|
|
122 | (2) |
|
|
124 | (2) |
|
7.8 Exercising a Stock Option |
|
|
126 | (2) |
|
7.9 Verification of the Simulation Model |
|
|
128 | (7) |
|
|
129 | (5) |
|
|
134 | (1) |
|
8 Statistical Analysis of Simulated Data |
|
|
135 | (18) |
|
|
135 | (1) |
|
8.1 The Sample Mean and Sample Variance |
|
|
135 | (6) |
|
8.2 Interval Estimates of a Population Mean |
|
|
141 | (3) |
|
8.3 The Bootstrapping Technique for Estimating Mean Square Errors |
|
|
144 | (9) |
|
|
150 | (2) |
|
|
152 | (1) |
|
9 Variance Reduction Techniques |
|
|
153 | (80) |
|
|
153 | (2) |
|
9.1 The Use of Antithetic Variables |
|
|
155 | (7) |
|
9.2 The Use of Control Variates |
|
|
162 | (7) |
|
9.3 Variance Reduction by Conditioning |
|
|
169 | (13) |
|
|
182 | (10) |
|
9.5 Applications of Stratified Sampling |
|
|
192 | (9) |
|
|
201 | (13) |
|
9.7 Using Common Random Numbers |
|
|
214 | (2) |
|
9.8 Evaluating an Exotic Option |
|
|
216 | (4) |
|
9.9 Appendix: Verification of Antithetic Variable Approach When Estimating the Expected Value of Monotone Functions |
|
|
220 | (13) |
|
|
222 | (9) |
|
|
231 | (2) |
|
10 Additional Variance Reduction Techniques |
|
|
233 | (14) |
|
|
233 | (1) |
|
10.1 The Conditional Bernoulli Sampling Method |
|
|
233 | (7) |
|
10.2 Normalized Importance Sampling |
|
|
240 | (4) |
|
10.3 Latin Hypercube Sampling |
|
|
244 | (3) |
|
|
246 | (1) |
|
11 Statistical Validation Techniques |
|
|
247 | (24) |
|
|
247 | (1) |
|
11.1 Goodness of Fit Tests |
|
|
247 | (7) |
|
11.2 Goodness of Fit Tests When Some Parameters Are Unspecified |
|
|
254 | (3) |
|
11.3 The Two-Sample Problem |
|
|
257 | (6) |
|
11.4 Validating the Assumption of a Nonhomogeneous Poisson Process |
|
|
263 | (8) |
|
|
267 | (3) |
|
|
270 | (1) |
|
12 Markov Chain Monte Carlo Methods |
|
|
271 | (30) |
|
|
271 | (1) |
|
|
271 | (3) |
|
12.2 The Hastings-Metropolis Algorithm |
|
|
274 | (2) |
|
|
276 | (11) |
|
12.4 Continuous time Markov Chains and a Queueing Loss Model |
|
|
287 | (3) |
|
|
290 | (3) |
|
12.6 The Sampling Importance Resampling Algorithm |
|
|
293 | (4) |
|
12.7 Coupling from the Past |
|
|
297 | (4) |
|
|
298 | (3) |
Bibliography |
|
301 | (2) |
Index |
|
303 | |