Preface |
|
ix | |
|
|
1 | (4) |
|
|
3 | (2) |
|
2 Elements of Probability |
|
|
5 | (36) |
|
2.1 Sample Space and Events |
|
|
5 | (1) |
|
2.2 Axioms of Probability |
|
|
6 | (1) |
|
2.3 Conditional Probability and Independence |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (3) |
|
|
14 | (2) |
|
2.7 Chebyshev's Inequality and the Laws of Large Numbers |
|
|
16 | (2) |
|
2.8 Some Discrete Random Variables |
|
|
18 | (6) |
|
Binomial Random Variables |
|
|
18 | (2) |
|
|
20 | (2) |
|
Geometric Random Variables |
|
|
22 | (1) |
|
The Negative Binomial Random Variable |
|
|
23 | (1) |
|
Hypergeometric Random Variables |
|
|
24 | (1) |
|
2.9 Continuous Random Variables |
|
|
24 | (9) |
|
Uniformly Distributed Random Variables |
|
|
25 | (1) |
|
|
26 | (1) |
|
Exponential Random Variables |
|
|
27 | (2) |
|
The Poisson Process and Gamma Random Variables |
|
|
29 | (3) |
|
The Nonhomogeneous Poisson Process |
|
|
32 | (1) |
|
2.10 Conditional Expectation and Conditional Variance |
|
|
33 | (2) |
|
The Conditional Variance Formula |
|
|
34 | (1) |
|
|
35 | (4) |
|
|
39 | (2) |
|
|
41 | (8) |
|
|
41 | (1) |
|
3.1 Pseudorandom Number Generation |
|
|
41 | (1) |
|
3.2 Using Random Numbers to Evaluate Integrals |
|
|
42 | (4) |
|
|
46 | (2) |
|
|
48 | (1) |
|
4 Generating Discrete Random Variables |
|
|
49 | (18) |
|
4.1 The Inverse Transform Method |
|
|
49 | (6) |
|
4.2 Generating a Poisson Random Variable |
|
|
55 | (2) |
|
4.3 Generating Binomial Random Variables |
|
|
57 | (1) |
|
4.4 The AcceptanceRejection Technique |
|
|
58 | (2) |
|
4.5 The Composition Approach |
|
|
60 | (1) |
|
4.6 Generating Random Vectors |
|
|
61 | (1) |
|
|
62 | (5) |
|
5 Generating Continuous Random Variables |
|
|
67 | (26) |
|
|
67 | (1) |
|
5.1 The Inverse Transform Algorithm |
|
|
67 | (4) |
|
|
71 | (7) |
|
5.3 The Polar Method for Generating Normal Random Variables |
|
|
78 | (4) |
|
5.4 Generating a Poisson Process |
|
|
82 | (1) |
|
5.5 Generating a Nonhomogeneous Poisson Process |
|
|
83 | (4) |
|
|
87 | (4) |
|
|
91 | (2) |
|
6 The Discrete Event Simulation Approach |
|
|
93 | (24) |
|
|
93 | (1) |
|
6.1 Simulation via Discrete Events |
|
|
93 | (1) |
|
6.2 A Single-Server Queueing System |
|
|
94 | (3) |
|
6.3 A Queueing System with Two Servers in Series |
|
|
97 | (2) |
|
6.4 A Queueing System with Two Parallel Servers |
|
|
99 | (3) |
|
|
102 | (1) |
|
6.6 An Insurance Risk Model |
|
|
103 | (2) |
|
|
105 | (3) |
|
6.8 Exercising a Stock Option |
|
|
108 | (2) |
|
6.9 Verification of the Simulation Model |
|
|
110 | (1) |
|
|
111 | (4) |
|
|
115 | (2) |
|
7 Statistical Analysis of Simulated Data |
|
|
117 | (20) |
|
|
117 | (1) |
|
7.1 The Sample Mean and Sample Variance |
|
|
117 | (6) |
|
7.2 Interval Estimates of a Population Mean |
|
|
123 | (3) |
|
7.3 The Bootstrapping Technique for Estimating Mean Square Errors |
|
|
126 | (7) |
|
|
133 | (2) |
|
|
135 | (2) |
|
8 Variance Reduction Techniques |
|
|
137 | (82) |
|
|
137 | (2) |
|
8.1 The Use of Antithetic Variables |
|
|
139 | (8) |
|
8.2 The Use of Control Variates |
|
|
147 | (7) |
|
8.3 Variance Reduction by Conditioning |
|
|
154 | (12) |
|
Estimating the Expected Number of Renewals by Time t |
|
|
164 | (2) |
|
|
166 | (9) |
|
8.5 Applications of Stratified Sampling |
|
|
175 | (9) |
|
Analyzing Systems Having Poisson Arrivals |
|
|
176 | (4) |
|
Computing Multidimensional Integrals of Monotone Functions |
|
|
180 | (2) |
|
|
182 | (2) |
|
|
184 | (13) |
|
8.7 Using Common Random Numbers |
|
|
197 | (1) |
|
8.8 Evaluating an Exotic Option |
|
|
198 | (5) |
|
8.9 Estimating Functions of Random Permutations and Random Subsets |
|
|
203 | (4) |
|
|
203 | (3) |
|
|
206 | (1) |
|
8.10 Appendix: Verification of Antithetic Variable Approach |
|
|
|
When Estimating the Expected Value of Monotone Functions |
|
|
207 | (2) |
|
|
209 | (8) |
|
|
217 | (2) |
|
9 Statistical Validation Techniques |
|
|
219 | (26) |
|
|
219 | (1) |
|
9.1 Goodness of Fit Tests |
|
|
219 | (8) |
|
The Chi-Square Goodness of Fit Test for Discrete Data |
|
|
220 | (2) |
|
The KolmogorovSmirnov Test for Continuous Data |
|
|
222 | (5) |
|
9.2 Goodness of Fit Tests When Some Parameters Are Unspecified |
|
|
227 | (3) |
|
|
227 | (3) |
|
|
230 | (1) |
|
9.3 The Two-Sample Problem |
|
|
230 | (7) |
|
9.4 Validating the Assumption of a Nonhomogeneous Poisson Process |
|
|
237 | (4) |
|
|
241 | (3) |
|
|
244 | (1) |
10 Markov Chain Monte Carlo Methods |
|
245 | (28) |
|
|
245 | (1) |
|
|
245 | (3) |
|
10.2 The HastingsMetropolis Algorithm |
|
|
248 | (3) |
|
|
251 | (11) |
|
|
262 | (2) |
|
10.5 The Sampling Importance Resampling Algorithm |
|
|
264 | (5) |
|
|
269 | (3) |
|
|
272 | (1) |
11 Some Additional Topics |
|
273 | (21) |
|
|
273 | (1) |
|
11.1 The Alias Method for Generating Discrete Random Variables |
|
|
273 | (4) |
|
11.2 Simulating a Two-Dimensional Poisson Process |
|
|
277 | (3) |
|
11.3 Simulation Applications of an Identity for Sums of Bernoulli Random Variables |
|
|
280 | (5) |
|
11.4 Estimating the Distribution and the Mean of the First Passage Time of a Markov Chain |
|
|
285 | (4) |
|
11.5 Coupling from the Past |
|
|
289 | (2) |
|
|
291 | (2) |
|
|
293 | (1) |
Index |
|
294 | |