Atjaunināt sīkdatņu piekrišanu

E-grāmata: Singular Perturbation in the Physical Sciences

  • Formāts: 326 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 12-Feb-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470427337
  • Formāts - PDF+DRM
  • Cena: 100,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 326 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 12-Feb-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470427337

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we ``see'' how a mathematical pattern fits a physical problem is like ``hitting the ball.'' Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena.

The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and phenomena, and the latter emphasizes geometric and physical insight. It will be useful for mathematicians and physicists learning singular perturbation analysis of ODE and PDE boundary value problems as well as the full range of related examples and problems. Prerequisites are basic skills in analysis and a good junior/senior level undergraduate course of mathematical physics.

Recenzijas

In all, this book is a valuable completion to the literature on singular perturbations. It might be the first reference to read but also a good auxiliary in understanding more specialized books or papers." Vladimir Rsvan, Zentralblatt MATH

"This is a lucid textbook written in an easy style. The book will be useful to researchers and graduate students in various areas of mathematics, mechanics, and physics." V.A. Sobolev, Mathematical Reviews

Acknowledgments ix
Introduction xi
Chapter 1 What is a singular perturbation?
1(30)
Prototypical examples
1(30)
Singularly perturbed polynomial equations
1(3)
Radiation reaction
4(3)
Problem 1.1 Bad truncations
7(2)
Problem 1.2 Harmonic oscillator with memory, and even worse truncations
9(2)
Convection-diffusion boundary layer
11(5)
Problem 1.3 A simple boundary layer
16(1)
Problem 1.4 Pileup near x =
17(2)
Modulated oscillations
19(4)
Problem 1.5 Secular terms
23(2)
Problem 1.6 Approach to limit cycle
25(3)
Problem 1.7 Adiabatic invariant for particle in a box
28(1)
Guide to bibliography
29(2)
Chapter 2 Asymptotic expansions
31(42)
Problem 2.1 Uniqueness
33(1)
A divergent but asymptotic series
34(4)
Problem 2.2 Divergent outer expansion
35(2)
Problem 2.3 Another outrageous example
37(1)
Asymptotic expansions of integrals --- the usual suspects
38(10)
Problem 2.4 Simple endpoint examples
42(1)
Problem 2.5 Stirling approximation to n!
43(1)
Problem 2.6 Endpoint and minimum both contribute
43(1)
Problem 2.7 Central limit theorem
44(4)
Steepest descent method
48(3)
Chasing the waves with velocity v > 0
51(2)
No waves for v < 0
53(4)
Problem 2.8 Steepest descent asymptotics
54(3)
A primer on linear waves
57(9)
Problem 2.9 Amplitude transport
60(1)
Problem 2.10 How far was that meteor?
61(1)
Problem 2.11 Wave asymptotics in non-uniform medium
62(4)
A hard logarithmic expansion
66(5)
Problem 2.12 Logarithmic expansion
69(2)
Guide to bibliography
71(2)
Chapter 3 Matched asymptotic expansions
73(32)
Problem 3.1 Physical scaling analysis of boundary layer thickness
74(7)
Problem 3.2 Higher-order matching
81(2)
Problem 3.3 Absorbing boundary condition
83(1)
Matched asymptotic expansions in practice
84(4)
Problem 3.4 Derivative layer
85(3)
Corner layers and internal layers
88(15)
Problem 3.5 Phase diagram
93(4)
Problem 3.6 Internal derivative layer
97(4)
Problem 3.7 Where does the kink go?
101(2)
Guide to bibliography
103(2)
Chapter 4 Matched asymptotic expansions in PDE's
105(46)
Moving internal layers
105(4)
Chapman--Enskog asymptotics
109(14)
Problem 4.1 Relaxation of kink position
113(1)
Problem 4.2 Hamilton--Jacobi equation from front motion
114(6)
Problem 4.3 Chapman--Enskog asymptotics
120(3)
Projected Lagrangian
123(15)
Problem 4.4 Circular fronts in nonlinear wave equation
127(4)
Problem 4.5 Solitary wave dynamics in two dimensions
131(4)
Problem 4.6 Solitary wave diffraction
135(3)
Singularly perturbed eigenvalue problem
138(4)
Homogenization of swiss cheese
142(7)
Problem 4.7 Neumann boundary conditions and effective dipoles
144(3)
Problem 4.8 Two dimensions
147(2)
Guide to bibliography
149(2)
Chapter 5 Prandtl boundary layer theory
151(32)
Stream function and vorticity
155(2)
Preliminary non-dimensionalization
157(1)
Outer expansion and "dry water"
157(1)
Inner expansion
158(5)
Problem 5.1 Vector calculus of boundary layer coordinates
161(2)
Leading order matching and a first integral
163(4)
Problem 5.2 The body surface is a source of vorticity
164(2)
Problem 5.3 Downstream evolution
166(1)
Displacement thickness
167(1)
Solutions based on scaling symmetry
168(3)
Blasius flow over flat plate
171(1)
Nonzero wedge angles (m ≠ 0)
172(1)
Precursor of boundary layer separation
173(7)
Problem 5.4 Wedge flows with source
174(3)
Problem 5.5 Mixing by vortex
177(3)
Guide to bibliography
180(3)
Chapter 6 Modulated oscillations
183(64)
Physical flavors of modulated oscillations
184(13)
Problem 6.1 Beats
185(1)
Problem 6.2 The beat goes on
186(2)
Problem 6.3 Wave packets as beats in spacetime
188(1)
Problem 6.4 Adiabatic invariant of harmonic oscillator
189(3)
Problem 6.5 Passage through resonance for harmonic oscillator
192(1)
Problem 6.6 Internal resonance between waves on a ring
193(4)
Method of two scales
197(19)
Problem 6.7 Nonlinear parametric resonance
203(3)
Problem 6.8 Forced van der Pol ODE
206(8)
Problem 6.9 Inverted pendulum
214(2)
Strongly nonlinear oscillations and action
216(11)
Problem 6.10 Energy, action and frequency
220(2)
Problem 6.11 Hamiltonian analysis of the adiabatic invariant
222(1)
Problem 6.12 Poincare analysis of nonlinear oscillations
223(4)
A primer on nonlinear waves
227(3)
Modulation Lagrangian
230(8)
Problem 6.13 Nonlinear geometric attenuation
230(3)
Problem 6.14 Modulational instability
233(5)
A primer on homogenization theory
238(7)
Problem 6.15 Direct homogenization
242(3)
Guide to bibliography
245(2)
Chapter 7 Modulation theory by transforming variables
247(40)
Transformations in classical mechanics
247(15)
Problem 7.1 Geometry of action-angle variables
250(4)
Problem 7.2 Stokes expansion for quadratically nonlinear oscillator
254(3)
Problem 7.3 Frequency-action relation
257(1)
Problem 7.4 Follow the bouncing ball
258(4)
Near-identity transformations
262(13)
Problem 7.5 Van der Pol ODE by near-identity transformations
267(3)
Problem 7.6 Subtle balance between positive and negative damping
270(3)
Problem 7.7 Adiabatic invariants again
273(2)
Dissipative perturbations of the Kepler problem
275(4)
Modulation theory of damped orbits
279(6)
Guide to bibliography
285(2)
Chapter 8 Nonlinear resonance
287(32)
Problem 8.1 Modulation theory of resonance
290(2)
A prototype example
292(3)
What resonance looks like
295(12)
Problem 8.2 Resonance of the bouncing ball
299(3)
Problem 8.3 Resonance by rebounds off a vibrating wall
302(5)
Generalized resonance
307(1)
Energy beats
308(1)
Modulation theory of generalized resonance
309(4)
Problem 8.4 Modulation theory for generalized resonance
312(1)
Thickness of the resonance annulus
313(2)
Asymptotic isolation of resonances
315(1)
Guide to bibliography
316(3)
Bibliography 319(2)
Index 321
John C. Neu, University of California, Berkeley, CA, USA.