Preface |
|
xiii | |
|
|
|
1 What are singularities all about? |
|
|
3 | (13) |
|
1.1 Drop pinch-off: scaling and universality |
|
|
5 | (4) |
|
1.2 Stationary cusps: persistent singularities |
|
|
9 | (1) |
|
1.3 Shock waves: propagation |
|
|
10 | (6) |
|
|
12 | (4) |
|
|
16 | (16) |
|
|
16 | (4) |
|
|
20 | (2) |
|
2.3 Regularization: saturation |
|
|
22 | (4) |
|
2.4 What is special about power laws? |
|
|
26 | (6) |
|
|
28 | (4) |
|
|
32 | (31) |
|
3.1 The spatial structure of blowup |
|
|
32 | (7) |
|
|
39 | (6) |
|
3.3 Similarity solutions and the dynamical system |
|
|
45 | (2) |
|
|
47 | (3) |
|
|
50 | (13) |
|
3.5.1 Similarity description |
|
|
55 | (2) |
|
|
57 | (6) |
|
|
63 | (26) |
|
|
63 | (1) |
|
4.2 The Navier--Stokes equation |
|
|
64 | (4) |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (5) |
|
|
72 | (2) |
|
4.5.2 Two-dimensional flow |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (12) |
|
|
82 | (7) |
|
5 Local singular expansions |
|
|
89 | (26) |
|
5.1 Potential flow in a corner |
|
|
89 | (4) |
|
5.2 Potential flow around a two-dimensional airfoil |
|
|
93 | (4) |
|
|
97 | (2) |
|
5.4 Electric fields near tips: Taylor cones |
|
|
99 | (3) |
|
5.5 Mixed boundary conditions |
|
|
102 | (3) |
|
5.6 Viscous flow in corners and Moffatt eddies |
|
|
105 | (10) |
|
|
110 | (5) |
|
6 Asymptotic expansions of PDEs |
|
|
115 | (28) |
|
|
115 | (8) |
|
|
121 | (2) |
|
|
123 | (20) |
|
|
129 | (14) |
|
PART II FORMATION OF SINGULARITIES |
|
|
|
|
143 | (43) |
|
7.1 Overview and dimensional analysis |
|
|
143 | (4) |
|
7.1.1 Surface tension--viscosity--inertia balance |
|
|
144 | (1) |
|
7.1.2 Surface tension--inertia balance |
|
|
145 | (1) |
|
7.1.3 Surface tension--viscosity balance |
|
|
146 | (1) |
|
|
147 | (7) |
|
7.2.1 Lagrangian transformation |
|
|
147 | (2) |
|
7.2.2 Similarity solutions |
|
|
149 | (5) |
|
|
154 | (15) |
|
7.3.1 The universal solution |
|
|
156 | (8) |
|
|
164 | (5) |
|
7.4 Fluctuating jet equations |
|
|
169 | (3) |
|
|
172 | (4) |
|
|
176 | (1) |
|
|
177 | (9) |
|
|
182 | (4) |
|
8 A numerical example: drop pinch-off |
|
|
186 | (21) |
|
8.1 Finite-difference scheme |
|
|
186 | (5) |
|
8.2 Time stepping and stability |
|
|
191 | (7) |
|
|
198 | (2) |
|
|
200 | (7) |
|
|
203 | (4) |
|
|
207 | (23) |
|
|
207 | (2) |
|
9.2 Center-manifold analysis |
|
|
209 | (5) |
|
|
214 | (16) |
|
|
214 | (4) |
|
9.3.2 Slender body theory |
|
|
218 | (2) |
|
|
220 | (3) |
|
9.3.4 Approach to the fixed point |
|
|
223 | (3) |
|
|
226 | (4) |
|
|
230 | (29) |
|
10.1 Post-breakup solution: viscous thread |
|
|
230 | (9) |
|
10.2 Regularization: thread formation for viscoelastic materials |
|
|
239 | (10) |
|
10.2.1 Dilute polymer solutions |
|
|
240 | (3) |
|
10.2.2 The beads-on-a-string configuration |
|
|
243 | (6) |
|
10.3 Crossover: bubbles and satellites |
|
|
249 | (10) |
|
|
252 | (7) |
|
PART III PERSISTENT SINGULARITIES: PROPAGATION |
|
|
|
|
259 | (39) |
|
|
259 | (5) |
|
11.2 Similarity description |
|
|
264 | (4) |
|
11.3 Conservation laws: shocks and unique continuation |
|
|
268 | (4) |
|
|
272 | (3) |
|
11.5 Compressible gas flow |
|
|
275 | (10) |
|
11.5.1 Unique continuation for systems |
|
|
279 | (6) |
|
11.6 Imploding spherical shocks |
|
|
285 | (13) |
|
11.6.1 Geometrical shock dynamics |
|
|
289 | (3) |
|
|
292 | (6) |
|
|
298 | (15) |
|
|
298 | (1) |
|
12.2 Periodic orbits: a toy model |
|
|
299 | (3) |
|
12.3 Discrete self-similarity in the implosion of polygonal shocks |
|
|
302 | (5) |
|
|
307 | (6) |
|
|
310 | (3) |
|
|
313 | (45) |
|
13.1 Point vortices in inviscid fluid flow |
|
|
316 | (6) |
|
|
316 | (6) |
|
|
322 | (6) |
|
13.2.1 Coiner singularity of a vortex filament |
|
|
326 | (2) |
|
|
328 | (13) |
|
13.3.1 Linear instability of vortex sheets |
|
|
333 | (2) |
|
13.3.2 Moore's singularity of vortex sheets |
|
|
335 | (4) |
|
13.3.3 Continuation of Moore's singularity |
|
|
339 | (2) |
|
13.4 Vortices in the Ginzburg--Landau equation |
|
|
341 | (11) |
|
13.4.1 Structure of stationary vortices |
|
|
343 | (3) |
|
13.4.2 The renormalized energy |
|
|
346 | (3) |
|
13.4.3 Dynamics of Ginzburg--Landau vortices |
|
|
349 | (3) |
|
13.5 Nonlinear Schrodinger equation |
|
|
352 | (6) |
|
|
354 | (4) |
|
|
358 | (32) |
|
14.1 Viscous free surface cusps |
|
|
358 | (6) |
|
|
364 | (2) |
|
|
366 | (6) |
|
|
372 | (6) |
|
14.5 The wavelength scale |
|
|
378 | (12) |
|
|
383 | (7) |
|
15 Contact lines and cracks |
|
|
390 | (37) |
|
15.1 Driven singularities |
|
|
390 | (1) |
|
|
390 | (19) |
|
15.2.1 Voinov solution: the universal singularity |
|
|
394 | (4) |
|
15.2.2 Regularization: inner region |
|
|
398 | (5) |
|
15.2.3 The drop: outer region |
|
|
403 | (5) |
|
15.2.4 The global problem: matching |
|
|
408 | (1) |
|
|
409 | (18) |
|
15.3.1 Universal tip singularity |
|
|
410 | (5) |
|
15.3.2 Inner problem: the fracture energy |
|
|
415 | (2) |
|
|
417 | (3) |
|
15.3.4 The global problem |
|
|
420 | (3) |
|
|
423 | (4) |
Appendix A Vector calculus |
|
427 | (4) |
Appendix B Index notation and the summation convention |
|
431 | (3) |
Appendix C Dimensional analysis |
|
434 | (2) |
References |
|
436 | (10) |
Index |
|
446 | |