Atjaunināt sīkdatņu piekrišanu

E-grāmata: In Situ Chemical Oxidation for Groundwater Remediation

Edited by , Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Based on a decade of intensive research, including observing commercial applications in the field, this highly useful resource for scientists and practicing engineers is a compendium of the latest principles and practices in ISCO for groundwater remediation.

This volume provides comprehensive up-to-date descriptions of the principles and practices of in situ chemical oxidation (ISCO) for groundwater remediation based on a decade of intensive research, development, and demonstrations, and lessons learned from commercial field applications.
Chapter 1 In Situ Chemical Oxidation: Technology Description And Status
1(32)
1.1 Contaminated Sites and In Situ Remediation
1(7)
1.1.1 Introduction
1(1)
1.1.2 Characteristics of Contaminated Sites
2(3)
1.1.3 Site Remediation Approaches
5(2)
1.1.4 Organization of This Volume on ISCO
7(1)
1.2 ISCO as a Remediation Technology
8(3)
1.3 Evolution of ISCO
11(5)
1.3.1 Research and Development Activities
11(3)
1.3.2 Field Applications
14(2)
1.4 System Selection, Design, and Implementation
16(4)
1.5 Project Performance and Costs
20(2)
1.6 Summary
22(3)
References
25(8)
Chapter 2 Fundamentals Of ISCO Using Hydrogen Peroxide
33(56)
2.1 Introduction
34(1)
2.2 Chemistry Principles
35(25)
2.2.1 Physical and Chemical Properties
35(1)
2.2.2 Oxidation Reactions
35(5)
2.2.3 Catalysis of Hydrogen Peroxide
40(7)
2.2.4 CHP Reaction Kinetics
47(6)
2.2.5 Factors Affecting Efficiency and Effectiveness of Oxidation
53(7)
2.3 Oxidant Interactions in the Subsurface
60(5)
2.3.1 Impact of Oxidant Persistence on Oxidant Transport
61(2)
2.3.2 Impacts on Metal Mobility
63(2)
2.4 Contaminant Treatability
65(15)
2.4.1 Halogenated Aliphatic Compounds
65(4)
2.4.2 Chlorinated Aromatic Compounds
69(4)
2.4.3 Fuel Hydrocarbons
73(1)
2.4.4 Polycyclic Aromatic Hydrocarbons
74(2)
2.4.5 High Explosives, Nitro- and Amino-Organic Compounds
76(1)
2.4.6 Pesticides
77(1)
2.4.7 Sorbed or NAPL Contaminants
77(3)
2.5 Summary
80(1)
References
81(8)
Chapter 3 Fundamentals Of ISCO Using Permanganate
89(58)
3.1 Introduction
90(1)
3.2 Chemistry Principles
90(13)
3.2.1 Physical and Chemical Properties
91(1)
3.2.2 Oxidation Reactions
92(1)
3.2.3 Reaction Mechanisms and Pathways
93(2)
3.2.4 Permanganate Reaction Kinetics
95(3)
3.2.5 Manganese Dioxide Production
98(4)
3.2.6 Carbon Dioxide Gas Evolution
102(1)
3.2.7 Oxidation of Natural Organic Matter
103(1)
3.3 Oxidant Interactions in the Subsurface
103(24)
3.3.1 Natural Oxidant Demand
104(9)
3.3.2 Permanganate Impacts on Subsurface Transport Processes
113(14)
3.4 Contaminant Treatability
127(11)
3.4.1 Chloroethenes
127(4)
3.4.2 Chloroethanes and Chloromethanes
131(1)
3.4.3 BTEX, MTBE, and Saturated Aliphatic Compounds
132(1)
3.4.4 Phenols
133(1)
3.4.5 Polycyclic Aromatic Hydrocarbons
133(4)
3.4.6 High Explosives and Related Compounds
137(1)
3.4.7 Pesticides
137(1)
3.5 Summary
138(1)
References
138(9)
Chapter 4 Fundamentals Of ISCO Using Persulfate
147(46)
4.1 Introduction
148(1)
4.2 Chemistry Principles
148(21)
4.2.1 Physical and Chemical Properties
148(1)
4.2.2 Oxidation Reactions
149(3)
4.2.3 Persulfate Activation and Propagation Reactions
152(8)
4.2.4 Persulfate Reaction Kinetics
160(4)
4.2.5 Factors Affecting Efficiency and Effectiveness of Oxidation
164(5)
4.3 Persulfate Interactions in the Subsurface
169(6)
4.3.1 Impacts on Subsurface Transport Processes
170(4)
4.3.2 Impacts on Metal Mobility
174(1)
4.4 Contaminant Treatability
175(10)
4.4.1 Halogenated Aliphatics
176(4)
4.4.2 Chlorinated Aromatics
180(1)
4.4.3 Fuel Hydrocarbons
181(1)
4.4.4 Polycyclic Aromatic Hydrocarbons
182(1)
4.4.5 Nitro-Aromatic Compounds
183(1)
4.4.6 Pesticides
184(1)
4.5 Summary
185(1)
References
185(8)
Chapter 5 Fundamentals Of ISCO Using Ozone
193(40)
5.1 Introduction
193(2)
5.2 Chemistry Principles
195(9)
5.2.1 Physical and Chemical Properties
195(1)
5.2.2 Oxidation Reactions
196(6)
5.2.3 Ozone Reaction Kinetics
202(2)
5.3 Oxidant Interactions in the Subsurface
204(12)
5.3.1 Interactions Affecting Reaction Chemistry
204(2)
5.3.2 Interactions Affecting Ozone Transport
206(2)
5.3.3 Ozone Transport Processes
208(4)
5.3.4 Modeling of ISCO Using Ozone
212(2)
5.3.5 Ozone Impacts on Metal Mobility
214(2)
5.4 Contaminant Treatability
216(9)
5.4.1 Chlorinated Aliphatics
216(2)
5.4.2 Chlorinated Aromatics
218(1)
5.4.3 Fuel Components and Total Petroleum Hydrocarbons
219(3)
5.4.4 Coal Tars, Creosote, and Hydrocarbon Wastes
222(2)
5.4.5 Nitroaromatics and Nitroamine Explosives
224(1)
5.4.6 Pesticides
225(1)
5.5 Summary
225(1)
References
226(7)
Chapter 6 Principles Of ISCO Related Subsurface Transport And Modeling
233(52)
6.1 Introduction
233(1)
6.2 Source Zone Architecture
234(2)
6.3 Contaminant Mass Transfer
236(5)
6.3.1 NAPL Dissolution
236(4)
6.3.2 Contaminant Sorption/Desorption
240(1)
6.4 Primary Reagent Transport Processes
241(5)
6.4.1 Advection
241(1)
6.4.2 Dispersion
242(1)
6.4.3 Diffusion
243(1)
6.4.4 Density-Induced Flow
244(1)
6.4.5 Sorption
244(1)
6.4.6 Gas Injection
245(1)
6.5 Processes Impacting Hydraulic Conditions
246(3)
6.5.1 Permeability Reductions Caused by Immobile Components
246(2)
6.5.2 Gas Formation
248(1)
6.6 Oxidant/Contaminant Kinetic Reaction Expressions
249(3)
6.6.1 Permanganate Reaction
250(1)
6.6.2 Ozone Reaction
251(1)
6.6.3 Hydrogen Peroxide Reaction
251(1)
6.6.4 Persulfate Reaction
251(1)
6.7 Oxidant Consumption by Nonproductive Reactions
252(2)
6.7.1 Permanganate Nonproductive Oxidant Demand
253(1)
6.7.2 Ozone Nonproductive Oxidant Demand
254(1)
6.7.3 Hydrogen Peroxide Nonproductive Oxidant Demand
254(1)
6.7.4 Persulfate Nonproductive Oxidant Demand
254(1)
6.8 Published ISCO Modeling Studies
254(6)
6.8.1 Ozone Modeling
255(2)
6.8.2 Permanganate Modeling
257(3)
6.9 Availability of ISCO Modeling Tools
260(14)
6.9.1 Model Dimensions (1-D/2-D/3-D)
261(1)
6.9.2 Analytical Solutions
261(2)
6.9.3 Conceptual Design for ISCO
263(5)
6.9.4 Chemical Oxidation Reactive Transport in Three-Dimensions
268(6)
6.10 Summary
274(1)
References
275(10)
Chapter 7 Principles Of Combining ISCO With Other In Situ Remedial Approaches
285(34)
7.1 Introduction
285(2)
7.2 In Situ Biological Methods
287(14)
7.2.1 Impacts of Oxidants on Geochemistry and Bioprocesses
287(2)
7.2.2 Enhanced Biodegradability of Contaminants by Pre-oxidation
289(1)
7.2.3 Monitored Natural Attenuation
290(9)
7.2.4 Enhanced In Situ Bioremediation
299(2)
7.3 Surfactant/Cosolvent Flushing Methods
301(6)
7.3.1 Oxidation in the Presence of Surfactants or Cosolvents
304(1)
7.3.2 Oxidation Mechanism Shifts in the Presence of Cosolvents
305(1)
7.3.3 Oxidant Compatibility with Surfactants and Cosolvents
305(1)
7.3.4 Surfactant Production by Oxidation Reactions
306(1)
7.4 Abiotic Reduction Methods
307(2)
7.4.1 Zero-Valent Iron
307(1)
7.4.2 Other In Situ Chemical Reduction Technologies
308(1)
7.5 Air Sparging Methods
309(1)
7.6 Thermal Methods
309(2)
7.7 Field Applications of Combined Approaches
311(1)
7.8 Summary
311(1)
References
312(7)
Chapter 8 Evaluation Of ISCO Field Applications And Performance
319(36)
8.1 Introduction
319(1)
8.2 Previous Case Study Reviews
320(2)
8.3 Development of an ISCO Case Study Database
322(10)
8.3.1 Key Database Parameter Definitions
322(6)
8.3.2 Case Study Database Development Construction
328(1)
8.3.3 Potential Limitations
329(3)
8.4 Overview of ISCO Case Study Database Contents
332(5)
8.5 Analysis of Conditions Impacting ISCO Designs
337(6)
8.5.1 COCs Treated
337(1)
3.5.2 Hydrogeologic Conditions
338(3)
8.5.3 Oxidant
341(2)
8.6 Analysis of Conditions Impacting ISCO Treatment Performance
343(5)
8.6.1 Use of Performance Metrics
343(1)
8.6.2 Performance Experiences and Effects of Design and Environmental Conditions
344(4)
8.7 Secondary ISCO Impacts
348(1)
8.8 Summary of Key Findings
349(2)
8.9 Summary
351(1)
References
351(4)
Chapter 9 Systematic Approach For Site-Specific Engineering Of ISCO
355(58)
9.1 Introduction
355(3)
9.2 Screening of ISCO Applicability
358(22)
9.2.1 Introduction
358(1)
9.2.2 Site Characterization Data Needed for CSM Development and Screening of ISCO
358(2)
9.2.3 Screening ISCO for Site-Specific Contaminants, Site Conditions, and Treatment Goals
360(6)
9.2.4 The Conceptual Site Model for ISCO Screening
366(1)
9.2.5 Consideration of Pre-ISCO Remediation
367(1)
9.2.6 Detailed Screening of ISCO
368(9)
9.2.7 Consideration of ISCO Coupling
377(3)
9.2.8 Outcomes of the ISCO Screening Process
380(1)
9.3 Conceptual Design of an ISCO System
380(15)
9.3.1 Introduction
380(1)
9.3.2 The Target Treatment Zone
380(2)
9.3.3 Tier 1 Conceptual Design
382(5)
9.3.4 Feasibility of Conceptual Design Options
387(1)
9.3.5 Ranking Oxidant and Delivery Approach Options
388(2)
9.3.6 Tier 2 Conceptual Design
390(5)
9.4 Detailed Design and Planning of an ISCO System
395(10)
9.4.1 Introduction
395(1)
9.4.2 Preliminary Design Phase
396(2)
9.4.3 Final Design Phase
398(4)
9.4.4 Planning Phase
402(3)
9.5 Implementation and Performance Monitoring
405(6)
9.5.1 Introduction
405(2)
9.5.2 Implementation Phase
407(2)
9.5.3 Delivery Performance Monitoring Phase
409(1)
9.5.4 Treatment Performance Monitoring Phase
410(1)
9.6 Summary
411(1)
References
411(2)
Chapter 10 Site Characterization And ISCO Treatment Goals
413(36)
10.1 Introduction
413(1)
10.2 Conceptual Site Models
414(3)
10.2.1 General Description
414(2)
10.2.2 Developing a CSM for ISCO
416(1)
10.3 Characterization Strategies and Approaches
417(3)
10.3.1 Introduction
417(1)
10.3.2 Overview of the Triad Approach
418(2)
10.4 Characterization Methods and Techniques
420(14)
10.4.1 Site Features and Land Use Attributes
420(1)
10.4.2 Nature and Extent of Contamination
421(8)
10.4.3 Hydrogeologic Conditions
429(1)
10.4.4 Geochemical Conditions
429(2)
10.4.5 Fate and Transport Processes
431(1)
10.4.6 Analysis and Visualization of Characterization Data
432(2)
10.5 Site Characterization Data Needed for ISCO
434(3)
10.6 ISCO Treatment Objectives and Goals
437(2)
10.7 Perspectives on Characterization and ISCO
439(1)
10.8 Summary
439(5)
References
444(5)
Chapter 11 Oxidant Delivery Approaches And Contingency Planning
449(32)
11.1 Introduction
449(1)
11.2 Primary Transport Mechanisms Affecting Distribution of Liquid Oxidants
450(3)
11.2.1 Advection During Injection of Liquid Oxidants
450(2)
11.2.2 Advection After Injection
452(1)
11.2.3 Diffusion After Advective Delivery into the Subsurface
453(1)
11.3 Oxidant Delivery Methods
453(14)
11.3.1 Direct-Push Probes for Liquid Injection
456(4)
11.3.2 Installed Wells for Liquid Injection
460(2)
11.3.3 Installed Wells for Gaseous Sparging
462(1)
11.3.4 Recirculation of Liquids
462(2)
11.3.5 Trench or Curtain Emplacement of Oxidants
464(1)
11.3.6 Mechanical Mixing of Oxidants and Soil
464(1)
11.3.7 Fracturing for Oxidant Emplacement
464(3)
11.3.8 Surface Application or Infiltration Gallery Methods
467(1)
11.4 General Considerations for Oxidant Delivery
467(5)
11.4.1 Aquifer Heterogeneity
468(1)
11.4.2 Contaminant Distribution
469(1)
11.4.3 Underground Utilities and Other Preferential Pathways
470(1)
11.4.4 Contaminant Displacement
470(1)
11.4.5 Need for Oxidant Activation
471(1)
11.5 Aboveground Oxidant Handling and Mixing
472(4)
11.6 Observational Method and Contingency Planning
476(2)
11.6.1 Observational Method
476(1)
11.6.2 Contingency Planning
476(2)
11.7 Summary
478(1)
References
479(2)
Chapter 12 ISCO Performance Monitoring
481(30)
12.1 Introduction
481(2)
12.2 General Considerations
483(5)
12.2.1 Establishment of Operational Objectives
483(1)
12.2.2 Accounting for ISCO Interactions in the Subsurface
484(2)
12.2.3 Performance Monitoring for Site-Specific Conditions
486(2)
12.3 Monitoring of Baseline Conditions
488(5)
12.3.1 Purpose and Scope
488(1)
12.3.2 Approach and Methodologies
489(4)
12.4 Monitoring During Oxidant Delivery
493(7)
12.4.1 Purpose and Scope
493(1)
12.4.2 Approach and Methodologies
494(6)
12.5 Monitoring of Treatment Performance
500(9)
12.5.1 Purpose and Scope
500(1)
12.5.2 Approach and Methodologies
501(5)
12.5.3 Data Evaluation
506(3)
12.6 Summary
509(1)
References
509(2)
Chapter 13 Project Cost And Sustainability Considerations
511(24)
13.1 Introduction
511(1)
13.2 Cost Estimating Approaches
512(2)
13.2.1 Classes of Estimates and Level of Details
512(1)
13.2.2 Cost Estimating Methods
513(1)
13.3 Primary Cost Components
514(3)
13.4 Historical and Illustrative Cost Estimates
517(13)
13.4.1 ISCO Project Costs Based on Case Study Data
517(1)
13.4.2 ISCO Project Costs Based on an Illustrative Example
517(12)
13.4.3 Comparing ISCO Project Costs
529(1)
13.5 Sustainability Considerations
530(3)
13.5.1 Sustainability Concepts and Definitions
530(1)
13.5.2 Making Technologies More Sustainable
531(2)
13.6 Summary
533(1)
References
533(2)
Chapter 14 ISCO Status And Future Directions
535(12)
14.1 Introduction
535(1)
14.2 Striving for Optimal Applications of ISCO
536(1)
14.3 Emerging Approaches and Technologies
537(4)
14.3.1 Combining ISCO with Other Technologies and Approaches
538(1)
14.3.2 Enhanced Delivery Methods for ISCO
538(1)
14.3.3 Improved ISCO Monitoring and Assessment
539(2)
14.4 Research Needs and Breakthrough Areas
541(3)
14.4.1 ISCO Process Chemistry
542(1)
14.4.2 ISCO Delivery
543(1)
14.4.3 ISCO System Design
543(1)
14.4.4 ISCO Process Control and Assessment
544(1)
14.5 Summary
544(1)
References
545(2)
Appendix A List of Acronyms, Abbreviations, and Symbols
547(10)
Appendix B Unit Conversion Table
557(2)
Appendix C Glossary
559(28)
Appendix D Supporting Information for Site-Specific Engineering of ISCO
587(38)
D.1 Test Procedures for Measurement of Natural Oxidant Demand and Oxidant Persistence
587(9)
D.1.1 Introduction
587(1)
D.1.2 Sample Collection, Preservation, and Storage
588(1)
D.1.3 Test Procedure for Measuring Oxidant Persistence
588(4)
D.1.4 Example of Test Procedure and Data Analysis
592(4)
D.1.5 References
596(1)
D.2 Test Procedures for Evaluating Contaminant Treatability and Reaction Products
596(7)
D.2.1 Introduction
596(1)
D.2.2 Test Procedures to Optimize Oxidation Chemistry
597(3)
D.2.3 Test Procedures to Explore Additional System Chemistry Considerations
600(2)
D.2.4 General Guidance
602(1)
D.2.5 Precautions with Interpretation and Application of Results
603(1)
D.3 Analytical Methods for Oxidant Concentrations
603(2)
D.3.1 Readily Available Methods
603(2)
D.3.2 References
605(1)
D.4 Considerations for ISCO Pilot-Scale Testing under Field Conditions
605(4)
D.4.1 Pilot Test Objective
605(2)
D.4.2 Injection Probe or Well Spacing and Volume/Mass of Oxidant
607(1)
D.4.3 Equipment
608(1)
D.4.4 Monitoring
608(1)
D.4.5 Examples
608(1)
D.5 Example Preliminary Basis of Design Report Outline for In Situ Chemical Oxidation by Permanganate Direct Injection
609(2)
D.6 Typical Components of an Operation Plan for ISCO Implementation
611(1)
D.6.1 Operational Metrics
611(1)
D.6.2 ISCO Treatment Milestones
611(1)
D.7 Development of ISCO Performance Specifications and/or Detailed Design Specifications and Drawings
612(3)
D.7.1 Performance Specifications
612(1)
D.7.2 Detailed Design Specifications and Drawings
613(2)
D.8 Quality Assurance Project Plan (QAPP) Content
615(1)
D.9 Description of Potential Pre-Construction Activities for an ISCO Project
616(4)
D.9.1 Injection Permitting
616(1)
D.9.2 Utility Clearance
617(1)
D.9.3 Potential Receptor Survey
618(1)
D.9.4 Engineering Controls for ISCO Implementation
618(1)
D.9.5 Administrative Activities
619(1)
D.9.6 Health and Safety Preparations
619(1)
D.9.7 References
620(1)
D.10 Construction and Delivery Effectiveness Quality Assurance and Quality Control (QA/QC) Guidelines
620(5)
Appendix E Case Studies and Illustrative Applications
625(34)
E.1 Case Study: Ozone Pilot Test
625(6)
E.1.1 Abstract
625(1)
E.1.2 Summary of Site Characteristics
625(1)
E.1.3 Summary of Pilot Test Features and Results
626(5)
E.1.4 References
631(1)
E.2 Case Study: Persulfate Pilot Test
631(9)
E.2.1 Abstract
631(1)
E.2.2 Summary of Site Characteristics
631(1)
E.2.3 Summary of Pilot Test Features and Results
632(8)
E.2.4 References
640(1)
E.3 Case Study: Hydrogen Peroxide Pilot Test
640(13)
E.3.1 Abstract
640(1)
E.3.2 Summary of Site Characteristics
640(1)
E.3.3 Summary of Pilot Test Features and Results
641(11)
E.3.4 References
652(1)
E.4 Illustrative Applications: Combined Approaches
653(6)
E.4.1 Impacts of Potassium Permanganate on Anaerobic Microbial Communities for Remediation of Chlorinated Solvents
653(2)
E.4.2 Catalyzed Hydrogen Peroxide and Associated Exothermicity for PAH Recovery and Remediation at a Former Manufactured Gas Plant Site
655(2)
E.4.3 Excavation Combined with Catalyzed Hydrogen Peroxide and Sodium Permanganate ISCO to Achieve Maximum Contaminant Levels at a PCE Site
657(1)
E.4.4 References
658(1)
Index 659