Atjaunināt sīkdatņu piekrišanu

E-grāmata: Skyrme Model: Fundamentals Methods Applications

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The December 1988 issue of the International Journal of Modern Physics A is dedicated to the memory of Tony Hilton Royle Skyrme. It contains an informative account of his life by Dalitz and Aitchison's reconstruction of a talk by Skyrme on the origin of the Skyrme model. From these pages, we learn that Tony Skyrme was born in England in December 1922. He grew up in that country during a period of increasing economic and political turbulence in Europe and elsewhere. In 1943, after Cambridge, he joined the British war effort in making the atomic bomb. He was associated with military projects throughout the war years and began his career as an academic theoretical physicist only in 1946. During 1946-61, he was associated with Cambridge, Birmingham and Harwell and was engaged in wide-ranging investigations in nuclear physics. It was this research which eventually culminated in his studies of nonlinear field theories and his remarkable proposals for the description of the nucleon as a chiral soliton. In his talk, Skyrme described the reasons behind his extraordinary sug­ gestions, which when first made must have seemed bizarre. According to him, ideas of this sort go back many decades and occur in the work of Sir William Thomson, who later became Lord Kelvin. Skyrme had heard of Kelvin in his youth.
I Fundamentals.-
1. The Evolution of Skyrme's Approach.- 1.1 The
"Mesonic Fluid" Model.- 1.2 The Chiral Modification.- 1.3 The Two-Dimensional
Simplified (sine-Gordon) Model.- 1.3.1 The Idea of Topological Charge.- 1.3.2
The Abelian Bosonization or Fermi-Bose Correspondence.- 1.4 The Baryon Model
- Topological Skyrmions.- 1.4.1 The (3+1)-dimensional "Angular" Variables.-
1.4.2 The Topological Charge in the (3+1) Model.- 1.4.3. The Skyrme Model
Dynamics.- 1.5 Skyrme's Results and Conjectures.-
2. Elements of Field Theory
with Topological Charges.- 2.1 Geometric Viewpoint on the Classical Field
Theory.- 2.1.1 The Configuration Space.- 2.1.2 Homotopy as a Formalization of
Dynamical Evolution.- 2.2 The Topological Classification of Solutions.- 2.2.1
Homotopy Classes of the sine-Gordon Model.- 2.2.2 The Fundamental and Higher
Homotopy Groups.- 2.3 Isham's Construction of Topological Charges.- 2.3.1
Cohomology - Homotopy Relationship in Brief.- 2.3.2 Derivation of Topological
Charge in the Skyrme Model.- 2.4 Guiding Principles in the Choice of Model
Lagrangians.- 2.4.1 Chirally Invariant Lagrangians.-
3. Topological
Stability.- 3.1 Some General Remarks.- 3.2 The Hobart-Derrick Theorem.- 3.3
Soliton Stability and the Second Variation Structure of the Lyapunov
Functional.- 3.3.1 The Lyapunov Stability of Solitons.- 3.3.2 The Generalized
Hobart-Derrick Theorem.- 3.3.3 The Q-stability of Solitons.- 3.4 The
Topological Stability of Skyrmions.- II Methods for the Study of Skyrmions.-
4. The Principle of Symmetric Criticality.- 4.1 Some Auxiliary Information.-
4.2 The Symmetry Group of the Skyrme Energy Functional.- 4.3 The
Coleman-Palais Theorem.- 4.4 The Structure of Invariant Fields (Ansatze).-
5.
Absolute Minimum of the Energy Functional.- 5.1 Method of Extending the Phase
Space.- 5.2 The Spherical Rearrangement Method.- 5.3 Skyrmion as the Absolute
Minimizer of the Energy.-
6. The Existence of Skyrmions.- 6.1 The Field
Equations for Skyrmions.- 6.2 The Direct Method in the Calculus of
Variations.- 6.3 An Outline of the Proof of the Skyrmion Existence.-
7.
Multi-Baryon and Rotating Skyrmion States.- 7.1 The Problem of Bound States
and Interaction Among Skyrmions.- 7.1.1 The Invariant Fields in Higher
Homotopy Classes.- 7.2 Minima of the Energy Functional in Higher Homotopy
Classes.- 7.3 The Rotating Skyrmion.-
8. Quantization of Skyrmions.- 8.1
Bogolubov's Method of Collective Coordinates.- 8.2 Canonical Quantization of
Skyrmions.- 8.3 The "Non-Rigid" Quantization of Skyrmions.- III Hadron
Physics Applications.-
9. The Skyrme Model and QCD.- 9.1 Express Review of
the QCD Present Status.- 9.2 1/N-Expansion.- 9.3 Effective Meson Theory from
QCD.- 9.3.1 The Low-energy QCD Attributes.- 9.3.2 The Topological Charge as
the Baryon Number.- 9.3.3 Effective Chiral Lagrangians from QCD.-
10.
Skyrmion as a Fermion.- 10.1 The Finkelstein's Double-Valued Functionals.-
10.2 The Charge-Monopole Multi-valued Action.- 10.3 The Wess-Zumino Term and
Witten's Realization of Skyrme's Suggestion.- 10.3.1 The Wess-Zumino Term in
Effective Chiral Lagrangian.- 10.3.2 Spin and Statistics of Skyrmions.-
11.
Quantized SU(3) Skyrmions and Their Interactions.- 11.1 The SU(Z) Generalized
Lagrangian in Terms of Collective Coordinates.- 11.1.1 The SU(3) Skyrme
"Collective" Lagrangian.- 11.1.2 The Wess-Zumino Term for Collective
Coordinates.- 11.1.3 The Symmetry Breaking Term.- 11.2 Quantization in the
Presence of the Wess-Zumino Term.- 11.2.1 Canonical Quantization.- 11.2.2
Symmetries, Constraint and Spectrum.- 11.2.3 Static Observables and Mass
Formulae.- 11.3 Skyrmions' Interactions: Nuclear Forces and Nuclear Matter.-
11.3.1 The Skyrmion-Skyrmion Interaction and Nuclear Forces.- 11.3.2 The
Meson-Baryon Interaction.- 11.3.3 The Skyrme Model and Nuclear Matter.-
Concluding Remarks.- IV Appendices.- A. Chiral Symmetry.- A.1 Algebraic
Aspects of Chiral Symmetry.- A.2 Geometric Aspects of Chiral Symmetry.- B. A
Concise Account of Algebraic Topology.- B.1 Smooth Manifolds.- B.2 Tangent
Spaces, Vector Fields and Lie Algebras.- B.3 Differential Forms.- B.4
Integration on Manifolds and De Rham Co-Homologies.- B.5 Fundamental Groups,
Homotopy Groups and Some Other Topological Invariants.- C. Methods of
Reduction.- C.1 Reduction to Static Field Configurations.- C.2 Reduction to
G-Invariant Fields.- C.3 Spherical Rearrangement Technique: An Illustration.-
D. Proofs of Stability and Existence Theorems.- D.1 Proof of Generalized
Hobart-Derrick Theorem.- D.2 Existence of the Axially-Symmetric Solutions.-
D.3 Existence of a Nonsingular Matrix.- E. Finkelstein-Williams' Spinor
Structures.- References.