Atjaunināt sīkdatņu piekrišanu

E-grāmata: Smart Biomaterial Devices: Polymers in Biomedical Sciences

(University of Hawaii at Manoa, Honolulu, USA), (Autonomous Science College, Jabalpur, India), (Ravi Shankar Institute of Technology and Management, Jhinna, India), , (Autonomous Science College, Jabalpur, India)
  • Formāts: 242 pages
  • Izdošanas datums: 19-Dec-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315354323
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 242 pages
  • Izdošanas datums: 19-Dec-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315354323

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Polymers have emerged as one of the most innovative classes of materials in modern materials science, leading to new applications in medicine and pharmacy. This book offers a convincing and understandable approach to polymer biomaterial devices being used in various areas related to biomedical and pharmaceutical fields. The polymer materials finding application as biomaterials are discussed and described in detail pertaining to the areas of artificial implants, orthopedics, ocular devices, dental implants, drug delivery systems, burns and wounds.

Preface xi
Authors xiii
1 Smart Biomaterials in Biomedical Applications
1(24)
1.1 Introduction
1(1)
1.2 Scaffold Requirements
1(2)
1.3 Types of Smart Polymeric Materials
3(8)
1.3.1 Classification on the Basis of Physical Form
3(2)
1.3.2 Classification on the Basis of External Stimulus
5(5)
1.3.3 Advance Functional Nanocarriers
10(1)
1.4 Biomedical Applications of Smart Polymeric Materials
11(6)
1.4.1 Dental Applications
12(1)
1.4.2 Orthopedic Applications
12(1)
1.4.3 Drug Delivery Applications
13(1)
1.4.4 Wound Dressing Applications
14(1)
1.4.5 Tissue Engineering Applications
15(1)
1.4.6 Ocular Applications
16(1)
1.4.7 Cardiovascular Applications
16(1)
1.5 Future Challenges and Prospects
17(8)
References
17(8)
2 Polymers in Dental Applications
25(18)
2.1 Introduction
25(1)
2.2 Physical and Mechanical Requirements for Medical Device Materials
25(2)
2.2.1 Physical Properties
26(1)
2.2.2 Mechanical Properties
26(1)
2.2.3 Esthetic Properties
26(1)
2.2.4 Chemical Stability
26(1)
2.2.5 Rheometric Properties
27(1)
2.2.6 Thermal Properties
27(1)
2.2.7 Biocompatibility
27(1)
2.3 Dental Implants
27(3)
2.3.1 Osseointegrated Implant
28(1)
2.3.2 Mini-Implants for Orthodontic Anchorage
28(1)
2.3.3 Zygomatic Implants
29(1)
2.3.4 Transosseous Implant
29(1)
2.3.5 Endodontic Implants
29(1)
2.4 Benefits of Dental Implants
30(1)
2.5 Disadvantages of Dental Implants
31(1)
2.6 Denture Materials
31(6)
2.6.1 Ceramics in Dentistry
31(1)
2.6.2 Metals
32(1)
2.6.3 Polymeric Materials
32(1)
2.6.3.1 Polymethyl Methacrylate
33(1)
2.6.3.2 Poly(Ortho Esters)
33(1)
2.6.3.3 Dental Restorative Composites
34(3)
2.6.3.4 Polyethyl Methacrylate (PEMA) and Polybutyl Methacrylate (PBMA)
37(1)
2.6.3.5 Future Polymers
37(1)
2.7 Complications in Implant Dentistry
37(1)
2.8 Conclusions
38(5)
References
38(5)
3 Polymers in Orthopedic Devices
43(22)
3.1 Introduction
43(1)
3.2 Materials Used in Orthopedic Applications
43(13)
3.2.1 Metals
45(1)
3.2.1.1 Essential Considerations in Design of Metallic Biomaterials
45(1)
3.2.1.2 Stainless Steels
45(2)
3.2.1.3 Cobalt-Based Alloys
47(2)
3.2.1.4 Titanium Alloys Used as Orthopedic Implants
49(1)
3.2.1.5 Stainless Steels, Cobalt, and Titanium Alloys in Total Joint Replacement
49(1)
3.2.2 Ceramics
50(1)
3.2.3 Polymer Composites Materials
50(1)
3.2.3.1 Fiber-Reinforced Composites (FRC)
50(1)
3.2.3.2 Filler-Reinforced Composites
50(1)
3.2.4 Polymers
51(3)
3.2.4.1 Polyesters
54(1)
3.2.4.2 Polymethyl Methacrylate
55(1)
3.2.4.3 Poly(ethyleneglycol)
55(1)
3.2.4.4 Polyphosphazenes
56(1)
3.2.4.5 Natural Polymers
56(1)
3.3 Advance Biomaterials
56(1)
3.4 Material Property Requirements for Bone Replacement
57(8)
References
58(7)
4 Smart Biomaterials in Drug Delivery Applications
65(36)
4.1 Introduction
65(1)
4.2 Carrier Materials Used for DDS
65(1)
4.3 Polymer-Based Nanocarrier Systems
66(27)
4.3.1 Novel Use of Natural Polymers in Drug Delivery
66(3)
4.3.2 Amphiphilically Modified Chitosan
69(3)
4.3.3 Cyclodextrins (CDs)
72(3)
4.3.4 Aerogel-Based Drug Delivery Systems
75(1)
4.3.5 Hydrogel-, Microgel-, and Nanogel-Based Drug Delivery Systems
75(1)
4.3.6 Polymer Micelles-Based Drug Delivery Systems
76(1)
4.3.7 Dendrimer-Based Drug Delivery Systems
77(7)
4.3.8 Guar Gum-Based Drug Delivery Systems
84(1)
4.3.9 Niosomes-Based Drug Delivery Systems
84(1)
4.3.9.1 Advantages of Niosomes
85(2)
4.3.10 Liposome-Based Drug Delivery Systems
87(1)
4.3.11 Carbon-Based Materials (Graphene) in Drug Delivery Systems
88(4)
4.3.12 Core-Shell Nanoparticles-Based Drug Delivery Systems
92(1)
4.3.12.1 Core-Shell Nanogels
93(1)
4.4 Conclusions and Future Prospects
93(8)
References
93(8)
5 Wound-Dressing Implants
101(24)
5.1 Wounds
101(1)
5.2 Types of Wound
101(1)
5.2.1 Necrotic Wounds
101(1)
5.2.2 Sloughing Wounds
101(1)
5.2.3 Granulating Wounds
101(1)
5.2.4 Epithelializing Wounds
102(1)
5.3 Wound Healing
102(1)
5.4 Phases of Wound Healing
102(2)
5.4.1 Hemostasis
103(1)
5.4.2 Inflammation
103(1)
5.4.3 Migration
103(1)
5.4.4 Proliferation
103(1)
5.4.5 Maturation
103(1)
5.5 Role of Oxygen in Wound Healing
104(1)
5.6 Requirement for Wound Healing
105(1)
5.7 Wound Dressing
106(4)
5.7.1 Reasons for Applying a Dressing
106(1)
5.7.2 Properties of the "Ideal" Wound Dressing
106(1)
5.7.3 Types of Dressing
106(1)
5.7.3.1 On the Basis of Nature
106(1)
5.7.3.2 According to Their Ability to Adhere to a Wound
107(1)
5.7.3.3 According to Their Ability to Permit the Passage of Exudates and Vapor
107(1)
5.7.3.4 Modern Dressings
108(2)
5.8 Physical Characterization of Wound Dressings
110(1)
5.9 Natural Polymers in Wound Dressings
110(3)
5.9.1 Chitosan
110(1)
5.9.2 Alginates
111(1)
5.9.3 Gelatin
111(1)
5.9.4 Carboxymethylcellulose
111(1)
5.9.5 Sterculia Gum
112(1)
5.10 Synthetic Polymers as Wound Dressings
113(1)
5.10.1 Polyurethane
113(1)
5.10.2 Silicones
113(1)
5.10.3 Polyvinyl Pyrrolidone
113(1)
5.10.4 Polyvinyl Alcohol
114(1)
5.11 Polymer Blends as Wound-Dressing Materials
114(2)
5.12 Tissue-Engineered Skin Substitutes
116(9)
References
117(8)
6 Smart Biomaterials in Tissue-Engineering Applications
125(36)
6.1 Basic Principles
125(1)
6.2 Foundations of Tissue Engineering
125(7)
6.2.1 Stem Cells
125(2)
6.2.1.1 Classification and Nomenclature of Stem Cells
127(1)
6.2.2 Scaffolds
128(2)
6.2.2.1 Prerequisites of Scaffolds
130(1)
6.2.2.2 Heart Valve Tissue-Engineered Scaffold Requirements
130(1)
6.2.2.3 Bone Tissue-Engineered Scaffold Requirements
131(1)
6.2.2.4 Scaffolds Essential Properties
131(1)
6.2.3 Cell Signaling
132(1)
6.2.3.1 Strategies for Biomaterial Presentation of Growth Factors
132(1)
6.3 Natural Materials in Tissue Engineering
132(16)
6.3.1 Polymeric and Natural Biomaterial
133(1)
6.3.1.1 Collagen
134(4)
6.3.1.2 Albumin
138(2)
6.3.1.3 Fibronectin and Fibrin
140(1)
6.3.1.4 Silk and Spider Silk
140(2)
6.3.1.5 Self-Assembled Peptides (SAPs)-Based Hydrogels for Tissue Engineering
142(2)
6.3.1.6 Hyaluronic Acid and Its Derivatives
144(1)
6.3.1.7 Agarose
144(1)
6.3.1.8 Alginate
144(2)
6.3.1.9 Chitosan and Carboxymethyl Chitosan
146(2)
6.4 Conclusions and Future Prospects
148(13)
References
150(11)
7 Ocular Implants
161(24)
7.1 Introduction
161(1)
7.2 Need for Eye Removal: Etiology and Surgery
162(1)
7.3 Ocular Implants
163(14)
7.3.1 Orbital Implants
164(1)
7.3.1.1 Nonintegrated Implants
165(1)
7.3.1.2 Quasi-Integrated Implants
166(1)
7.3.1.3 Porous Implants
167(2)
7.3.1.4 Porous Quasi-Integrated Implants
169(1)
7.3.1.5 Complications in Orbital Implants Replacement
169(1)
7.3.2 Intraocular Lenses
170(2)
7.3.3 Contact Lenses
172(1)
7.3.4 Ocular Drug Delivery
173(4)
7.4 Conclusions and Future Perspectives
177(8)
References
177(8)
8 Polymers in Cardiovascular Implants
185(22)
8.1 Introduction
185(1)
8.2 Blood-Biomaterial Interfacial Interaction Mechanism and Biocompatibility of Cardiovascular Biomaterials
185(2)
8.3 Cardiovascular Biomaterials
187(2)
8.4 Classification of Cardiovascular Biomaterials
189(7)
8.4.1 Hydrogel-Based Cardiovascular Biomaterials
189(1)
8.4.2 Silk-Based Cardiovascular Biomaterials
189(2)
8.4.3 Polymers Used in Soft-Tissue Engineering
191(1)
8.4.3.1 Naturally Occurring Polymers
191(1)
8.4.3.2 Synthetic Polymers
191(4)
8.4.4 Metals and Alloys
195(1)
8.5 Surface Modification of Cardiovascular Biomaterials
196(1)
8.6 Biofunctionalization of Cardiovascular Biomaterials
197(1)
8.7 Current Challenges for Clinical Trials of Cardiovascular Medical Devices
197(10)
References
198(9)
9 Market Scenario of Biomaterial-Based Devices
207(12)
9.1 Introduction
207(1)
9.2 The Biomaterials Market
207(8)
9.2.1 Orthopedic Biomaterials Worldwide Market
207(1)
9.2.1.1 Orthopedic Biomaterials Market Growth in the United States
208(1)
9.2.2 Tissue Engineering and Cell Therapy Global Market Development
209(1)
9.2.3 The Global Wound Management Market
210(1)
9.2.3.1 Bioactive Agents in Wound Sealing and Closure
211(1)
9.2.4 The Global Dental Market
211(2)
9.2.5 The Cardiovascular Market
213(1)
9.2.5.1 Asia Driving Diagnostic Cardiology Device Market
214(1)
9.2.5.2 Key Players in the Cardiovascular Medical Device Industry
214(1)
9.3 Global Ophthalmology Devices Market
215(1)
9.4 Global Regenerative Medicines Market
216(1)
9.5 Conclusions
216(3)
References
217(2)
Index 219
Dr. Atul Tiwari is a research faculty member in the Department of Mechanical Engineering at the University of Hawaii, USA.