Atjaunināt sīkdatņu piekrišanu

E-grāmata: Smooth And Nonsmooth High Dimensional Chaos And The Melnikov-type Methods

(Technical Univ Of Lodz, Poland), (Technical Univ Of Lodz, Poland)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 54,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics.This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background.
Preface v
A Role of the Melnikov-Type Methods in Applied Sciences
1(10)
Introduction
1(2)
Application of the Melnikov-type methods
3(8)
Classical Melnikov Approach
11(14)
Introduction
11(2)
Geometric interpretation
13(7)
Melnikov's function
20(5)
Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction
25(32)
Mathematical Model
25(28)
Homoclinic Chaos Criterion
53(1)
Numerical Simulations
54(3)
Smooth and Nonsmooth Dynamics of a Quasi-Autonomous Oscillator with Coulomb and Viscous Frictions
57(8)
Stick-Slip Oscillator with Periodic Excitation
57(2)
Analysis of the Wandering Trajectories
59(3)
Comparison of Analytical and Numerical Results
62(3)
Application of the Melnikov-Gruendler Method to Mechanical Systems
65(14)
Mechanical Systems with Finite Number of Degrees-of-Freedom
65(3)
2-DOFs Mechanical Systems
68(10)
Reduction of the Melnikov-Gruendler Method for 1-DOF Systems
78(1)
A Self-Excited Spherical Pendulum
79(24)
Analytical Prediction of Chaos
79(20)
Numerical Results
99(4)
A Double Self-excited Duffing-type Oscillator
103(90)
Analytical Prediction of Chaos
103(77)
Numerical Simulations
180(8)
Additional Numerical Example
188(5)
A Triple Self-Excited Duffing-type Oscillator
193(92)
Physical and Mathematical Models
193(1)
Analytical Prediction of Homoclinic Intersections
194(91)
Bibliography 285(6)
Index 291