Atjaunināt sīkdatņu piekrišanu

Smooth Quasigroups and Loops 1999 ed. [Hardback]

  • Formāts: Hardback, 249 pages, height x width: 235x155 mm, weight: 1230 g, XVI, 249 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 492
  • Izdošanas datums: 31-Aug-1999
  • Izdevniecība: Springer
  • ISBN-10: 0792359208
  • ISBN-13: 9780792359203
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 249 pages, height x width: 235x155 mm, weight: 1230 g, XVI, 249 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 492
  • Izdošanas datums: 31-Aug-1999
  • Izdevniecība: Springer
  • ISBN-10: 0792359208
  • ISBN-13: 9780792359203
Citas grāmatas par šo tēmu:
During the last twenty-five years quite remarkable relations between nonas­ sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al­ lows us to reconstruct this space in a unique way. Moreover, any smooth ab­ stractly given geoodular structure generates in a unique manner an affinely con­ nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc.. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory.

Papildus informācija

Springer Book Archives
Preface ix
Introduction xiii
Introductory Survey: Quasigroups, Loopuscular Geometry and Nonlinear Geometric Algebra
1(20)
PART ONE. FUNDAMENTAL STRUCTURES OF NONLINEAR GEOMETRIC ALGEBRA 21(36)
Basic Algebraic Structures
23(13)
Quasigroups, loops, odules, diodules
23(2)
Loopuscular, odular, diodular algebras
25(4)
Holonomial and geometric odules
29(1)
Antiproducts, Chern algebras, geodetic spaces
30(1)
Geoodular axiomatics of affine spaces
31(5)
Semidirect Products of a Quasigroup by its Transassociants
36(11)
Basic Smooth Structures
47(10)
Smooth universal algebras
47(3)
Maximal partial algebras
50(1)
Smooth odules and odular structures
51(4)
Canonical odules and odular structures
55(2)
PART TWO. SMOOTH LOOPS AND HYPERALGEBRAS 57(72)
Infinitesimal Theory of Smooth Loops
59(28)
General theory
59(13)
Smooth local geometric odules
72(5)
Smooth holomial odules
77(7)
Additional differential equations
84(3)
Smooth Bol Loops and Bol Algebras
87(18)
Bol algebras
87(1)
General theory
88(9)
Smooth Bol loops and homogeneous spaces
97(2)
Triple Lie systems of vector fields
99(1)
Pseudoderivatives of Bol algebras
100(2)
Enveloping Lie algebras of a Bol algebra
102(1)
Infinitesimal theory
103(1)
Final notices
104(1)
Smooth Moufang Loops and Mal'cev Algebras
105(6)
Smooth Hyporeductive and Pseudoreductive Loops
111(18)
Smooth hyporeductive loops
111(12)
Smooth pseudoreductive loops
123(6)
PART THREE. LOOPUSCULAR GEOMETRY 129(54)
Affine Connections and Loopuscular Structures
131(15)
Tangent affine connections of loopuscular structures
131(4)
Natural geoodular (linear geodiodular) structures of an affinely connected manifold
135(5)
Flat geoodular manifolds
140(3)
Differential geometry of right monoalternative loops
143(2)
Final remarks
145(1)
Reductive Geoodular Spaces
146(9)
Symmetric Geoodular Spaces
155(11)
s-Spaces
166(9)
General theory
166(6)
Perfect s-structures
172(3)
Geometry of Smooth Bol and Moufang Loops
175(8)
Differential geometry of smooth Bol loops
175(2)
Main structure theorem of the theory of smooth Bol loops
177(3)
Differential geometry of smooth Moufang loops
180(3)
APPENDICES 183(46)
Appendix
1. Lie Triple Algebras and Reductive Spaces
185(4)
Appendix
2. Left F-Quasigroups. Loopuscular Approach
189(10)
Appendix
3. Left F-Quasigroups and Reductive Spaces
199(6)
Appendix
4. Geometry of Transsymmetric Spaces
205(5)
Appendix
5. Half Bol Loops
210(8)
Appendix
6. Almost Symmetric and Antisymmetric Manifolds
218(8)
Appendix
7. Right Alternative Local Analytic Loops
226(3)
Bibliography 229(16)
Index 245