Atjaunināt sīkdatņu piekrišanu

E-grāmata: Social Media Analysis for Event Detection

Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Social Networks
  • Izdošanas datums: 18-Oct-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031082429
  • Formāts - EPUB+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Social Networks
  • Izdošanas datums: 18-Oct-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031082429

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book includes chapters which discuss effective and efficient approaches in dealing with various aspects of social media analysis by using machine learning techniques from clustering to deep learning. A variety of theoretical aspects, application domains and case studies are covered to highlight how it is affordable to maximize the benefit of various applications from postings on social media platforms. Social media platforms have significantly influenced and reshaped various social aspects. They have set new means of communication and interaction between people, turning the whole world into a small village where people with internet connect can easily communicate without feeling any barriers. This has attracted the attention of researchers who have developed techniques and tools capable of studying various aspects of posts on social media platforms with main concentration on Twitter. This book addresses challenging applications in this dynamic domain where it is not possible to continue applying conventional techniques in studying social media postings. The content of this book helps the reader in developing own perspective about how to benefit from machine learning techniques in dealing with social media postings and how social media postings may directly influence various applications.


Chapter
1. A network-based approach to understanding international cooperation in environmental protection (Andreea Nita).
Chapter
2. Critical Mass and Data Integrity Diagnostics of a Twitter Social Contagion Monitor (Amruta Deshpande).
Chapter
3. TenFor: Tool to Mine Interesting Events from Security Forums Leveraging Tensor Decomposition (Risul Islam).
Chapter
4. Profile Fusion in Social Networks: A Data-Driven Approach -Youcef Benkhedda).
Chapter
5. RISECURE: Metro Transit Disruptions Detection Using Social Media Mining And Graph Convolution (Omer Zulqar).
Chapter
6. Local Taxonomy Construction: An Information Retrieval Approach Using Representation Learning (Mayank Kejriwal).
Chapter
7. The evolution of online sentiments across Italy during first and second wave of the COVID-19 pandemic (Francesco Scotti).
Chapter
8. Inferring Degree of Localization and Popularity of Twitter Topics and Persons using Temporal Features (Aleksey Panasyuk).
Chapter
9. Covid-19 and Vaccine Tweet Analysis (Eren Alp).

Tansel Özyer is a professor of Computer Engineering at Ankara Medipol University, Turkey. He completed his PhD in Computer Science, University of Calgary. He received his MSc and BSc from Computer Engineering departments of METU and Bilkent University. Research interests are data science, machine learning, bioinformatics, XML, mobile databases, and computer vision.