Atjaunināt sīkdatņu piekrišanu

Solar Energy Sciences and Engineering Applications [Mīkstie vāki]

Edited by (RMIT University, Melbourne, Australia), Edited by
  • Formāts: Paperback / softback, 692 pages, height x width: 246x174 mm, weight: 1111 g, 220 Illustrations, black and white
  • Izdošanas datums: 30-Apr-2017
  • Izdevniecība: CRC Press
  • ISBN-10: 1138075531
  • ISBN-13: 9781138075535
  • Mīkstie vāki
  • Cena: 109,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 692 pages, height x width: 246x174 mm, weight: 1111 g, 220 Illustrations, black and white
  • Izdošanas datums: 30-Apr-2017
  • Izdevniecība: CRC Press
  • ISBN-10: 1138075531
  • ISBN-13: 9781138075535
Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.

This book introduces the rapid development and progress in the field of solar energy applications for science and technology: the advancement in the field of biological processes & chemical processes; electricity production; and mechanical operations & building operations enhanced by solar energy.

The volume covers bio-hydrogen production and other biological processes related to solar energy; chemical processes for the production of hydrogen from water and other endothermic processes using solar energy; the development of thermo-electric production through solar energy; the development of solar ponds for electric energy production; and the mechanical operation with solar energy; the building operation with solar energy optimization and urban planning.

This book is an invaluable resource for scientists who need the scientific and technological knowledge of the wide coverage of solar energy sciences and engineering applications. This will further encourage researchers, scientists, engineers and students to stimulate the use of solar energy as an alternative energy source.
Preface xv
About the editors xvii
1 Physics of solar energy and its applications 1(6)
1.1 Introduction
1(1)
1.2 Solar energy and energy demand
1(2)
1.3 Solar energy utilizations
3(2)
1.4 Perspective
5(2)
2 Exergy analysis of solar radiation processes 7(90)
2.1 Introduction
7(1)
2.2 Exergy
8(23)
2.2.1 Definition of exergy
8(2)
2.2.2 Exergy annihilation law
10(2)
2.2.3 Exergy of substance
12(5)
2.2.4 Exergy of photon gas
17(2)
2.2.5 Exergy of radiation emission
19(6)
2.2.6 Exergy of radiation flux
25(6)
2.3 Thermodynamic analysis
31(14)
2.3.1 Significance of thermodynamic analysis
31(1)
2.3.2 Energy balance equations
32(4)
2.3.3 Exergy balance equations
36(5)
2.3.4 Process efficiency
41(4)
2.4 Solar radiation processes
45(52)
2.4.1 Conversion of solar radiation into heat
45(17)
2.4.2 Solar cylindrical-parabolic cooker
62(9)
2.4.3 Solar chimney power plant
71(13)
2.4.4 Photosynthesis
84(7)
2.4.5 Photovoltaic
91(6)
3 Exergy analysis of solar energy systems 97(22)
3.1 Introduction
97(1)
3.2 Energy and exergy aspects and analyses
98(2)
3.3 Case studies
100(16)
3.3.1 Case study 1: Exergy analysis of an integrated solar, ORC system for power production
100(5)
3.3.2 Case study 2: Exergy analysis of solar photovoltaic/thermal (PV/T) system for power and heat production
105(6)
3.3.3 Case study 3: Exergy assessment of an integrated solar PV/T and triple effect absorption cooling system for hydrogen and cooling production
111(5)
3.4 Concluding remarks
116(3)
4 Solar energy collection and storage 119(30)
4.1 Solar thermal energy collectors
119(5)
4.1.1 Overview
119(1)
4.1.2 Flat plate solar energy collectors
120(1)
4.1.3 Evacuated tube collectors
121(1)
4.1.4 Collector components
122(2)
4.2 Integral collector storage systems
124(2)
4.2.1 Integral passive solar water heaters
124(1)
4.2.2 Salt gradient solar ponds
124(2)
4.3 Concentrators
126(2)
4.3.1 Introduction
126(1)
4.3.2 Concentration systems
126(2)
4.4 Solar water heating
128(12)
4.4.1 Overview
128(1)
4.4.2 Applicability of particular collector types to specific outlet temperatures and diffuse fractions
129(2)
4.4.3 Freeze protection methods
131(2)
4.4.4 Sensible and latent heat storage
133(1)
4.4.5 Analytical representation of thermosyphon solar energy water heater
134(3)
4.4.6 Solar water heater design
137(3)
4.5 Solar energy collection and storage for drying crops
140(2)
4.6 Solar energy collector and storage for thermal power generation
142(1)
4.7 Overall system optimization
142(7)
5 Basics of the photovoltaic thermal module 149(22)
5.1 Introduction
149(2)
5.2 PV/T devices
151(9)
5.2.1 Liquid PV/T collector
153(1)
5.2.2 Air PV/T collector
154(3)
5.2.3 Ventilated PV with heat recovery
157(2)
5.2.4 PV/T concentrator
159(1)
5.3 PV/T module concepts
160(2)
5.3.1 Different types of PV/T modules
161(1)
5.4 Techniques to improve PV/T performance
162(3)
5.5 Conclusion
165(6)
6 Thermal modelling of parabolic trough collectors 171(24)
6.1 Introduction
171(5)
6.2 The energy model
176(11)
6.2.1 Convection heat transfer between the HTF and the receiver pipe
178(1)
6.2.2 Conduction heat transfer through the receiver pipe wall
179(1)
6.2.3 Heat transfer from the receiver pipe to the glass envelope
180(2)
6.2.4 Conduction heat transfer through the glass envelope
182(1)
6.2.5 Heat transfer from the glass envelope to the atmosphere
182(2)
6.2.6 Solar irradiation absorption
184(3)
6.3 Code testing
187(4)
6.4 Conclusions
191(4)
7 Salinity gradient solar ponds 195(24)
7.1 Introduction
195(2)
7.2 Solar pond - design philosophy
197(5)
7.2.1 Sustainable use of resources
197(1)
7.2.2 Best site characteristics
198(1)
7.2.3 Performance and sizing
198(1)
7.2.4 Liner, salt and water
199(2)
7.2.5 Transient performance prediction
201(1)
7.3 Solar pond - construction and operation
202(7)
7.3.1 Set-up and maintenance
202(2)
7.3.2 Turbidity control
204(1)
7.3.3 Heat extraction
205(1)
7.3.4 Performance monitoring
206(1)
7.3.5 EEE (Energy, Environmental and Economic) benefit evaluation
206(3)
7.4 Solar ponds - worldwide
209(5)
7.4.1 Solar ponds - Israel
209(1)
7.4.2 Solar ponds - Australia
209(1)
7.4.3 Solar ponds - USA
210(2)
7.4.4 Solar ponds - Tibet, China
212(1)
7.4.5 Solar ponds - India
213(1)
7.5 Solar ponds - applications
214(1)
7.5.1 Heating
214(1)
7.5.2 Aquaculture
214(1)
7.5.3 Desalination
215(1)
7.5.4 Power production
215(1)
7.6 Future directions
215(4)
8 The solar thermal electrochemical production of energetic molecules: Step 219(38)
8.1 Introduction
219(2)
8.2 Solar thermal electrochemical production of energetic molecules: An overview
221(12)
8.2.1 STEP theoretical background
221(4)
8.2.2 STEP solar to chemical energy conversion efficiency
225(5)
8.2.3 Identification of STEP consistent endothermic processes
230(3)
8.3 Demonstrated step processes
233(13)
8.3.1 STEP hydrogen
233(1)
8.3.2 STEP carbon capture
233(6)
8.3.3 STEP iron
239(5)
8.3.4 STEP chlorine and magnesium production (chloride electrolysis)
244(2)
8.4 Step constraints
246(4)
8.4.1 STEP limiting equations
246(1)
8.4.2 Predicted STEP efficiencies for solar splitting of CO2
247(2)
8.4.3 Scaleability of STEP processes
249(1)
8.5 Conclusions
250(7)
9 Solar hydrogen production and CO2 recycling 257(36)
9.1 Sustainable fuels with solar-based hyrogen production and carbon dioxide recycling
257(2)
9.2 Solar-based hydrogen production with water splitting methods
259(18)
9.2.1 Solar-to-hydrogen efficiency of water splitting processes
259(2)
9.2.2 Matching the temperature requirements of solar-based hydrogen production methods
261(1)
9.2.3 Thermolysis, thermal decomposition and thermochemical methods
262(5)
9.2.4 Water electrolysis
267(3)
9.2.5 Photoelectrolysis and photoelectrochemical water splitting
270(2)
9.2.6 Photochemical, photocatalytic, photodissociation, photodecomposition, and photolysis
272(3)
9.2.7 Hybrid and other hydrogen production methods
275(2)
9.3 Solar-based CO2 recycling with hydrogen
277(4)
9.4 Summary
281(12)
10 Photoelectrochemical cells for hydrogen production from solar energy 293(50)
10.1 Introduction
293(1)
10.2 Photoelectrochemical cells systems overview
293(18)
10.2.1 Solar water-splitting arrangements
293(4)
10.2.2 Working principles of photoelectrochemical cells for water-splitting
297(2)
10.2.3 Materials overview
299(5)
10.2.4 Stability issues - photocorrosion
304(2)
10.2.5 PEC reactors
306(5)
10.3 Electrochemical impendance spectroscopy
311(9)
10.3.1 Fundamentals
312(3)
10.3.2 Electrical analogues
315(3)
10.3.3 EIS analysis of PEC cells for water-splitting
318(2)
10.4 Fundamentals in electrochemistry applied to photoelectrochemical cells
320(13)
10.4.1 Semiconductor energy
321(7)
10.4.2 Continuity and kinetic equations
328(5)
10.5 Pec cells bottlenecks and future prospects
333(10)
11 Photobiohydrogen production and high-performance photobioreactor 343(32)
11.1 Introduction
343(1)
11.2 General description of photobiohydrogen production
344(5)
11.2.1 Photoautotrophic hydrogen production
344(3)
11.2.2 Photoheterotrophic hydrogen production
347(1)
11.2.3 Critical issues in photobiohydrogen production
348(1)
11.3 Genetic and metabolic engineering
349(3)
11.4 High-performance photobioreactor
352(15)
11.4.1 Modification of photobioreactor configurations
352(5)
11.4.2 Optimization of the operating parameters
357(4)
11.4.3 Application of cell immobilization
361(6)
11.5 Challenges and future directions
367(8)
12 Decontamination of water by combined solar advanced oxidation processes and biotreatment 375(20)
12.1 Introduction
375(1)
12.2 Solar photo-fenton
376(6)
12.2.1 Solar photo-Fenton hardware
378(4)
12.3 Strategy for combining solar advanced oxidation processes and biotreatment
382(7)
12.3.1 Average oxidation state
383(1)
12.3.2 Activated sludge respirometry
384(2)
12.3.3 Zahn-Wellens test
386(2)
12.3.4 Factors to be considered in designing a combined system
388(1)
12.4 Combining solar advanced oxidation processes and biotreatment: Case studies
389(6)
12.4.1 Case study A: An unsuccessful AOP/biological process
389(1)
12.4.2 Case study B: A successful AOP/biological process
389(6)
13 Solar driven advanced oxidation processes for water decontamination and disinfection 395(18)
13.1 Introduction
395(1)
13.2 Solar radiation collection for AOPs applications
396(2)
13.3 Solar homogenous photocatalysis
398(5)
13.3.1 Degradation of organic pollutants by solar driven photo-Fenton processes
399(1)
13.3.2 Microorganisms inactivation by solar driven photo-Fenton processes
400(3)
13.4 Solar heterogenous photocatalysis
403(3)
13.4.1 Degradation of organic pollutants by solar driven heterogeneous photocatalysis
405(1)
13.4.2 Microorganisms inactivation by solar driven heterogeneous photocatalysis
406(1)
13.5 Challenges and perspectives
406(2)
13.5.1 Photorreactor design
406(1)
13.5.2 Suspended vs. immobilized photocatalyst
407(1)
13.5.3 Visible light active photocatalyst materials
408(1)
13.6 Conclusions
408(5)
14 Solar energy conversion with thermal cycles 413(72)
14.1 Introduction
413(1)
14.2 Solar concentration concept in thermal systems
414(3)
14.3 Concentrating solar technologies
417(31)
14.3.1 Linear focus
420(2)
14.3.2 Parabolic trough
422(2)
14.3.3 Reflectors
424(1)
14.3.4 Heat collection element
425(2)
14.3.5 Structure
427(1)
14.3.6 Parabolic trough performance
428(2)
14.3.7 Linear fresnel
430(2)
14.3.8 Heat collection element
432(1)
14.3.9 Reflectors
433(1)
14.3.10 Linear Fresnel performance
434(4)
14.3.11 Cost comparison of linear focus technologies
438(1)
14.3.12 Point focus
438(1)
14.3.13 Central receiver systems
439(1)
14.3.14 Collector field
440(2)
14.3.15 Central receiver
442(3)
14.3.16 Solar dish
445(1)
14.3.17 Receiver
446(1)
14.3.18 Power system
447(1)
14.4 Heat transfer fluids and storage
448(11)
14.4.1 Heat transfer fluids
449(3)
14.4.2 Storage
452(7)
14.5 From heat to power
459(13)
14.5.1 Rankine cycle
461(5)
14.5.2 Rankine cycle performance
466(1)
14.5.3 Stirling cycle
466(2)
14.5.4 Stirling configurations
468(3)
14.5.5 Stirling working fluids
471(1)
14.6 Economics and future perspectives
472(13)
15 Solar hybrid air-conditioning design for buildings in hot and humid climates 485(22)
15.1 Introduction
485(1)
15.2 Design approaches of solar air-conditioning
486(6)
15.2.1 The solar-electric approach
486(1)
15.2.2 The solar-thermal approach
486(4)
15.2.3 A hybrid approach to system design
490(1)
15.2.4 A hybrid approach to energy sources and system design
491(1)
15.3 Performance evaluation of various solar air-conditioning systems
492(9)
15.3.1 Principal solar-thermal air-conditioning systems
493(1)
15.3.2 SHAC with load sharing
494(1)
15.3.3 SHAG with radiant cooling
495(2)
15.3.4 SHAC coordinated with new indoor ventilation strategies
497(2)
15.3.5 SHAC for premises with high latent load
499(2)
15.4 Application potential of SHAC in various hot and humid cities in southeast Asia
501(1)
15.5 Conclusion and future development
502(5)
16 Solar-desiccant air-conditioning systems 507(38)
16.1 Introduction
507(3)
16.1.1 Energy and environment
507(1)
16.1.2 The building environment
508(2)
16.2 The basic concept
510(5)
16.2.1 Thermodynamic processes
510(2)
16.2.2 Advantages of the open systems
512(1)
16.2.3 Desiccant materials
513(2)
16.3 Solid-based system
515(7)
16.3.1 Basic concept
515(1)
16.3.2 Typical systems
516(1)
16.3.3 Modified systems
517(3)
16.3.4 Hybrid systems
520(2)
16.4 Liquid-based system
522(3)
16.4.1 Basic concept
522(1)
16.4.2 Typical systems
522(1)
16.4.3 Modified systems
523(1)
16.4.4 Hybrid systems
523(2)
16.5 System application
525(11)
16.5.1 Countries
525(1)
16.5.2 Temperate regions
526(3)
16.5.3 Sub-temperate regions
529(2)
16.5.4 Hot and humid regions
531(5)
16.6 Future and perspectives
536(9)
17 Building integrated concentrating solar systems 545(44)
17.1 Introduction to building integration of solar energy systems
545(11)
17.1.1 Solar thermal systems and building integration requirements
546(4)
17.1.2 Solar photovoltaic systems and building integration requirements
550(6)
17.2 Building integrated concentrating systems
556(23)
17.2.1 Physics of concentrating solar system
556(1)
17.2.2 Types of concentrators
557(4)
17.2.3 Building integrated concentrating photovoltaics
561(14)
17.2.4 Building integrated solar thermal (concentrating)
575(3)
17.2.5 Concentrating systems and building integration requirements
578(1)
17.3 Conclusions
579(10)
18 Solar energy use in buildings 589(34)
18.1 Introduction
589(1)
18.2 Passive solar gains in cold and moderate climatic regions
590(2)
18.2.1 Passive solar gains by glazing
592(1)
18.3 Total energy transmittance of glazing
592(4)
18.4 New glazing systems
596(1)
18.5 Transparent thermal insulation (TTI)
597(1)
18.6 Operational principle of transparent thermal insulation
597(4)
18.7 Materials used and construction
601(1)
18.8 Heat storage by interior building elements
602(3)
18.9 Component temperatures for sudden temperature increases
605(4)
18.10 Solar gains, shading strategies and air conditioning of buildings
609(5)
18.11 Influence of the urban form on solar energy use in buildings
614(1)
18.12 Residential buildings in an urban context
614(1)
18.13 Site density effect and urban shading in moderate climates
614(3)
18.14 Climate effect
617(1)
18.15 Solar gains and glazing
618(2)
18.16 Office buildings in an urban context
620(3)
19 The contribution of bioclimatic architecture in the improvement of outdoor urban spaces 623(20)
19.1 Introduction
623(2)
19.2 Mitigation strategies
625(5)
19.2.1 Planted areas
626(1)
19.2.2 Cool materials
627(2)
19.2.3 Shadings
629(1)
19.2.4 Thermal sinks
629(1)
19.2.5 Combination and interplay of mitigation strategies
629(1)
19.3 Experimental analysis of outdoor spaces
630(8)
19.3.1 Assessment of outdoor comfort conditions
630(4)
19.3.2 Assessment of bioclimatic technologies
634(4)
19.4 Conclusions and future prospects
638(5)
20 Legislation to foment the use of renewable energies and solar thermal energy in building construction: The case of Spain 643(22)
20.1 Introduction
643(1)
20.2 European regulatory framework for renewable energy sources in the context of the energy performance of buildings
643(5)
20.3 Application of EU regulations in member states: The case in Spain
648(6)
20.3.1 National action plan for renewable energies
649(2)
20.3.2 Basic procedure for the certification of energy efficiency
651(1)
20.3.3 The Spanish technical building code
652(1)
20.3.4 Spanish regulations for thermal installations in buildings
653(1)
20.4 The solar thermal system
654(3)
20.5 The Spanish technical building code as a legal means to foment the use of renewable energies in building construction
657(2)
20.6 Measures to foment the use of renewable energies: Government incentives
659(1)
20.7 Economic impact of solar thermal energy
660(2)
20.8 Conclusions
662(3)
Subject index 665
Napoleon Enteria, Aliakbar Akbarzadeh