Atjaunināt sīkdatņu piekrišanu

Solar and Stellar Dynamos: Saas-Fee Advanced Course 39 Swiss Society for Astrophysics and Astronomy 2013 ed. [Hardback]

  • Formāts: Hardback, 240 pages, height x width: 235x155 mm, weight: 5089 g, XVI, 240 p., 1 Hardback
  • Sērija : Saas-Fee Advanced Course 39
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642320929
  • ISBN-13: 9783642320927
  • Hardback
  • Cena: 78,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 91,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 240 pages, height x width: 235x155 mm, weight: 5089 g, XVI, 240 p., 1 Hardback
  • Sērija : Saas-Fee Advanced Course 39
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642320929
  • ISBN-13: 9783642320927

Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models, global MHD simulations, and fossil fields. Each chapter is accompanied by an annotated bibliography, guiding the readers to the relevant technical literature, which may lead them to carry out their own research in the field of dynamo theory.



This book presents a thorough, step-by-step introduction to solar and stellar dynamos. It offers an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models.
1 Magnetohydrodynamics
1(36)
1.1 The Fluid Approximation
2(2)
1.1.1 Matter as a Continuum
2(1)
1.1.2 Solid Versus Fluid
3(1)
1.2 Essentials of Hydrodynamics
4(9)
1.2.1 Mass: The Continuity Equation
4(2)
1.2.2 The D/Dt Operator
6(1)
1.2.3 Linear Momentum: The Navier-Stokes Equations
7(3)
1.2.4 Angular Momentum: The Vorticity Equation
10(2)
1.2.5 Energy: The Entropy Equation
12(1)
1.3 The Magnetohydrodynamical Induction Equation
13(2)
1.4 Scaling Analysis
15(3)
1.5 The Lorentz Force
18(2)
1.6 Joule Heating
20(1)
1.7 The Full Set of MHD Equations
20(2)
1.8 MHD Waves
22(1)
1.9 Magnetic Energy
23(1)
1.10 Magnetic Flux Freezing and Alfven's Theorem
24(1)
1.11 The Magnetic Vector Potential
25(1)
1.12 Magnetic Helicity
26(1)
1.13 Force-Free Magnetic Fields
26(1)
1.14 The Ultimate Origin of Astrophysical Magnetic Fields
27(3)
1.14.1 Why B and not E?
27(1)
1.14.2 Monopoles and Batteries
28(2)
1.15 The Astrophysical Dynamo Problem(s)
30(7)
1.15.1 A Simple Dynamo
30(3)
1.15.2 The Challenges
33(1)
Bibliography
34(3)
2 Decay and Amplification of Magnetic Fields
37(50)
2.1 Resistive Decays of Magnetic Fields
37(7)
2.1.1 Axisymmetric Magnetic Fields
38(1)
2.1.2 Poloidal Field Decay
39(2)
2.1.3 Toroidal Field Decay
41(1)
2.1.4 Results for a Magnetic Diffusivity Varying with Depth
42(1)
2.1.5 Fossil Stellar Magnetic Fields
43(1)
2.2 Magnetic Field Amplification by Stretching and Shearing
44(8)
2.2.1 Hydrodynamical Stretching and Field Amplification
44(2)
2.2.2 The Vainshtein & Zeldovich Flux Rope Dynamo
46(2)
2.2.3 Hydrodynamical Shearing and Field Amplification
48(1)
2.2.4 Toroidal Field Production by Differential Rotation
48(4)
2.3 Magnetic Field Evolution in a Cellular Flow
52(12)
2.3.1 A Cellular Flow Solution
52(5)
2.3.2 Flux Expulsion
57(2)
2.3.3 Digression: The Electromagnetic Skin Depth
59(1)
2.3.4 Timescales for Field Amplification and Decay
60(2)
2.3.5 Flux Expulsion in Spherical Geometry: Axisymmetrization
62(2)
2.4 Two Anti-Dynamo Theorems
64(4)
2.4.1 Zeldovich's Theorem
65(1)
2.4.2 Cowling's Theorem
66(2)
2.5 The Roberts Cell Dynamo
68(7)
2.5.1 The Roberts Cell
68(1)
2.5.2 Dynamo Solutions
69(3)
2.5.3 Exponential Stretching and Stagnation Points
72(1)
2.5.4 Mechanism of Field Amplification in the Roberts Cell
73(1)
2.5.5 Fast Versus Slow Dynamos
74(1)
2.6 The CP Flow and Fast Dynamo Action
75(7)
2.6.1 Dynamo Solutions
76(2)
2.6.2 Fast Dynamo Action and Chaotic Trajectories
78(2)
2.6.3 Magnetic Flux Versus Magnetic Energy
80(1)
2.6.4 Fast Dynamo Action in the Nonlinear Regime
81(1)
2.7 Dynamo Action in Turbulent Flows
82(5)
Bibliography
83(4)
3 Dynamo Models of the Solar Cycle
87(66)
3.1 The Solar Magnetic Field
88(7)
3.1.1 Sunspots and the Photospheric Magnetic Field
88(2)
3.1.2 Hale's Polarity Laws
90(2)
3.1.3 The Magnetic Cycle
92(1)
3.1.4 Sunspots as Tracers of the Sun's Internal Magnetic Field
93(1)
3.1.5 A Solar Dynamo Shopping List
94(1)
3.2 Mean-Field Dynamo Models
95(26)
3.2.1 Mean-Field Electrodynamics
95(2)
3.2.2 The α-Effect
97(4)
3.2.3 Turbulent Pumping
101(1)
3.2.4 The Turbulent Diffusivity
102(1)
3.2.5 The Mean-Field Dynamo Equations
103(1)
3.2.6 Dynamo Waves
103(2)
3.2.7 The Axisymmetric Mean-Field Dynamo Equations
105(2)
3.2.8 Linear αω Dynamo Solutions
107(5)
3.2.9 Nonlinearities and α-Quenching
112(1)
3.2.10 Kinematic αω Models with α-Quenching
113(3)
3.2.11 Enters Meridional Circulation: Flux Transport Dynamos
116(2)
3.2.12 Interface Dynamos
118(3)
3.3 Babcock-Leighton Models
121(11)
3.3.1 Sunspot Decay and the Babcock-Leighton Mechanism
122(5)
3.3.2 Axisymmetrization Revisited
127(1)
3.3.3 Dynamo Models Based on the Babcock-Leighton Mechanism
128(1)
3.3.4 The Babcock-Leighton Poloidal Source Term
129(1)
3.3.5 A Sample Solution
130(2)
3.4 Models Based on HD and MHD Instabilities
132(3)
3.4.1 Models Based on Shear Instabilities
132(2)
3.4.2 Models Based on Flux-Tube Instabilities
134(1)
3.5 Global MHD Simulations
135(8)
3.6 Local MHD Simulations
143(10)
Bibliography
146(7)
4 Fluctuations, Intermittency and Predictivity
153(34)
4.1 Observed Patterns of Solar Cycle Variations
153(11)
4.1.1 Pre-Telescopic and Early Telescopic Sunspot Observations
153(2)
4.1.2 The Sunspot Cycle
155(1)
4.1.3 The Butterfly Diagram
156(2)
4.1.4 The Waldmeier and Gnevyshev-Ohl Rules
158(2)
4.1.5 The Magnetic Activity Cycle
160(1)
4.1.6 The Maunder Minimum
160(2)
4.1.7 From Large-Scale Magnetic Fields to Sunspot Number
162(2)
4.2 Cycle Modulation Through Stochastic Forcing
164(4)
4.3 Cycle Modulation Through the Lorentz Force
168(3)
4.4 Cycle Modulation Through Time Delays
171(2)
4.5 Intermittency
173(3)
4.6 Model-based Cycle Predictions
176(11)
4.6.1 The Solar Polar Magnetic Field as a Precursor
177(3)
4.6.2 Model-Based Prediction Using Solar Data
180(2)
Bibliography
182(5)
5 Stellar Dynamos
187(28)
5.1 Early-Type Stars
189(6)
5.1.1 Mean-Field Models
189(3)
5.1.2 Numerical Simulations of Core Dynamo Action
192(2)
5.1.3 Getting the Magnetic Field to the Surface
194(1)
5.1.4 Alternative to Core Dynamo Action
194(1)
5.2 A-Type Stars
195(3)
5.2.1 Observational Overview
195(2)
5.2.2 The Fossil Field Hypothesis
197(1)
5.2.3 Dynamical Stability of Large-Scale Magnetic Fields
197(1)
5.2.4 The Transition to Solar-Like Dynamo Activity
197(1)
5.3 Solar-Type Stars
198(9)
5.3.1 Observational Overview
198(1)
5.3.2 Empirical Stellar Activity Relationships
199(1)
5.3.3 Solar and Stellar Spin-Down
200(6)
5.3.4 Modelling Dynamo Action in Solar-Type Stars
206(1)
5.4 Fully Convective Stars
207(1)
5.5 Pre- and Post-Main-Sequence Stars
208(1)
5.6 Compact Objects
209(1)
5.7 Galaxies and Beyond
210(5)
Bibliography
211(4)
Appendix A Useful Identities and Theorems from Vector Calculus 215(2)
Appendix B Coordinate Systems and the Fluid Equations 217(10)
Appendix C Physical and Astronomical Constants 227(2)
Appendix D Maxwell's Equations and Physical Units 229(4)
Index 233
Paul Charbonneau is a professor in the astrophysics group of the physics department of the University of Montréal. He has been working on solar activity and its possible influence on the Earth climate.