|
|
xv | |
About the Editors |
|
xvii | |
Preface |
|
xix | |
|
1 Introduction To The Solid State -- Physical Properties And Processes |
|
|
1 | (34) |
|
|
|
1 | (6) |
|
1.1.1 The Gas/Vapour And Liquid States |
|
|
1 | (2) |
|
1.1.2 The Crystalline State |
|
|
3 | (2) |
|
|
5 | (2) |
|
1.2 Neutral Pharmaceutical Molecules |
|
|
7 | (2) |
|
1.3 Thermodynamics And Phase Diagrams |
|
|
9 | (6) |
|
|
11 | (1) |
|
1.3.2 One-Component (Unary) Systems |
|
|
12 | (1) |
|
1.3.3 Two-Component (Binary) Systems |
|
|
13 | (1) |
|
1.3.4 Three-Component (Ternary) Systems |
|
|
14 | (1) |
|
1.4 Neutral Pharmaceutical Molecules In The Solid State |
|
|
15 | (1) |
|
1.5 Salt Formation And Acid-Base Equilibrium |
|
|
16 | (4) |
|
1.6 Polymorphs, Solvates And Mixed Crystals |
|
|
20 | (6) |
|
|
22 | (1) |
|
1.6.2 Solvates And Hydrates |
|
|
23 | (3) |
|
1.7 Phase Transitions And Kinetics |
|
|
26 | (4) |
|
|
27 | (2) |
|
1.7.2 Solid-To-Solid Phase Transitions |
|
|
29 | (1) |
|
1.8 Screening For `Polymorphs' (Ansolvates And Solvates) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (4) |
|
|
31 | (4) |
|
|
35 | (36) |
|
|
|
35 | (1) |
|
2.2 Generation And Properties Of X-Rays |
|
|
35 | (2) |
|
|
36 | (1) |
|
2.3 Crystal, Lattices, Unit Cells And Symmetry |
|
|
37 | (7) |
|
2.3.1 Point Group Symmetry |
|
|
37 | (1) |
|
2.3.2 Unit Cells And Crystal Lattices |
|
|
38 | (2) |
|
|
40 | (1) |
|
2.3.4 Space Group Symmetry |
|
|
41 | (2) |
|
2.3.5 The Asymmetric Unit |
|
|
43 | (1) |
|
2.4 The Interaction Of X-Rays With Crystals |
|
|
44 | (3) |
|
|
44 | (1) |
|
2.4.2 X-Rays And Crystals |
|
|
45 | (1) |
|
2.4.3 Determining Space Groups |
|
|
46 | (1) |
|
2.5 Collecting Intensity Data For Single Crystals |
|
|
47 | (2) |
|
2.6 Determining Crystal Structures |
|
|
49 | (6) |
|
2.6.1 The Fundamental Equations Of Crystallography And The Phase Problem |
|
|
49 | (2) |
|
2.6.2 Data Resolution And Completeness |
|
|
51 | (1) |
|
2.6.3 Methods Of Solving Crystal Structures |
|
|
51 | (1) |
|
2.6.4 Completing The Structure |
|
|
52 | (1) |
|
2.6.5 Refinement And Validation |
|
|
52 | (1) |
|
2.6.6 Small Crystals And The Synchrotron |
|
|
53 | (1) |
|
|
53 | (1) |
|
2.6.8 Absolute Configuration |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (10) |
|
2.7.1 Preferred Orientation |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.7.3 Qualitative Analysis: Pattern Matching |
|
|
59 | (1) |
|
2.7.4 Compositions Of Mixtures: Quantitative Analysis |
|
|
60 | (1) |
|
2.7.5 Structure Solution From Powders |
|
|
61 | (2) |
|
2.7.6 Powder Diffraction And Polymorphs |
|
|
63 | (2) |
|
2.7.7 Nonambient Conditions |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.10 Other Radiations: Neutrons And Electrons |
|
|
67 | (4) |
|
|
67 | (2) |
|
|
69 | (1) |
|
|
69 | (2) |
|
3 Spectroscopic Characterization |
|
|
71 | (64) |
|
|
|
3.1 Introduction And Theory |
|
|
71 | (1) |
|
3.2 Electromagnetic Radiation |
|
|
72 | (2) |
|
3.3 Vibrational Spectroscopy |
|
|
74 | (2) |
|
3.3.1 Basic Instrument Configuration For Spectroscopy |
|
|
75 | (1) |
|
3.4 Mid- And Near-Infrared Spectroscopy |
|
|
76 | (5) |
|
|
77 | (1) |
|
3.4.2 Attenuated Total Reflectance Spectrometry |
|
|
78 | (1) |
|
|
79 | (1) |
|
3.4.4 Pharmaceutical Examples Of The Use Of Atr-Ft-Ir Spectroscopy |
|
|
79 | (2) |
|
3.5 Near-Infrared Spectroscopy |
|
|
81 | (17) |
|
|
81 | (4) |
|
|
85 | (2) |
|
3.5.3 Qualitative And Quantitative Data Analysis |
|
|
87 | (2) |
|
3.5.4 Pharmaceutical Applications |
|
|
89 | (2) |
|
|
91 | (1) |
|
3.5.6 Pseudopolymorphism, Hydrates And Solvates |
|
|
91 | (1) |
|
3.5.7 Authentication Of Medicines And Detection Of Counterfeit And Clone Versions |
|
|
92 | (1) |
|
3.5.8 Pharmaceutical Examples Of The Use Of Nir Spectrometry |
|
|
92 | (6) |
|
|
98 | (14) |
|
|
98 | (4) |
|
|
102 | (1) |
|
3.6.3 Pharmaceutical Applications |
|
|
102 | (1) |
|
3.6.4 Raman Spectrometry For Process Monitoring, Degradation, Stability And Crystallization |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
106 | (2) |
|
3.6.7 Process Analytical Technology |
|
|
108 | (1) |
|
3.6.8 Raman Spectroscopy: Pharmaceutical Examples |
|
|
109 | (3) |
|
3.7 Chemical Imaging And Mapping Microscopy |
|
|
112 | (5) |
|
3.8 Nuclear Magnetic Resonance Spectroscopy |
|
|
117 | (7) |
|
3.8.1 Pharmaceutical Applications |
|
|
122 | (1) |
|
3.8.2 General Applications |
|
|
122 | (1) |
|
|
123 | (1) |
|
3.8.4 Drug Substance And Dosage Form Analysis |
|
|
124 | (1) |
|
3.8.5 Conformation, Stereochemistry And Hydrogen Bonding Interactions |
|
|
124 | (1) |
|
3.9 Terahertz Pulsed Spectroscopy |
|
|
124 | (11) |
|
|
124 | (1) |
|
|
124 | (2) |
|
3.9.3 Sample And Instrument Preparation |
|
|
126 | (1) |
|
3.9.4 Recent Developments In Instrumentation |
|
|
127 | (1) |
|
3.9.5 Pharmaceutical Applications |
|
|
127 | (3) |
|
|
130 | (5) |
|
4 Thermal Analysis -- Conventional Techniques |
|
|
135 | (52) |
|
|
|
|
135 | (1) |
|
4.2 Differential Scanning Calorimetry (Dsc) |
|
|
135 | (11) |
|
4.2.1 Heat Flow Measurements |
|
|
136 | (1) |
|
|
137 | (1) |
|
4.2.3 General Practical Points |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
4.2.7 The Instrumental Transient |
|
|
140 | (1) |
|
|
140 | (2) |
|
4.2.9 Factors Affecting Calibration |
|
|
142 | (1) |
|
4.2.10 Double Furnace Design |
|
|
142 | (1) |
|
4.2.11 Single Furnace Designs |
|
|
143 | (1) |
|
4.2.12 Differential Thermal Analysis (Dta) |
|
|
144 | (1) |
|
4.2.13 Modulated Temperature Profiles |
|
|
144 | (1) |
|
|
145 | (1) |
|
4.3 Thermogravimetric Analysis (Tga) |
|
|
146 | (2) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
4.3.4 Sample Interpretation |
|
|
148 | (1) |
|
4.4 Dynamic Mechanical Analysis (Dma) |
|
|
148 | (6) |
|
|
148 | (2) |
|
4.4.2 How Does A Dma Work? |
|
|
150 | (4) |
|
4.5 Determining The Melting Behaviour Of Crystalline Solids |
|
|
154 | (2) |
|
4.5.1 Evaluating The Melting Point Transition |
|
|
155 | (1) |
|
4.5.2 Melting Point Determination For Identification Of Samples |
|
|
155 | (1) |
|
|
156 | (12) |
|
4.6.1 Significance Of Pharmaceutical Polymorphism |
|
|
156 | (1) |
|
4.6.2 Thermodynamic And Kinetic Aspects Of Polymorphism: Enantiotropy And Monotropy |
|
|
157 | (1) |
|
4.6.3 Characterization Of Polymorphs By Dsc |
|
|
158 | (3) |
|
4.6.4 Determining Polymorphic Purity By Dsc |
|
|
161 | (6) |
|
4.6.5 Interpretation Of Dsc Thermograms Of Samples Exhibiting Polymorphism |
|
|
167 | (1) |
|
4.7 Solvates And Hydrates (Pseudopolymorphism) |
|
|
168 | (3) |
|
4.7.1 Factors Influencing Dsc Curves Of Hydrates And Solvates |
|
|
168 | (2) |
|
4.7.2 Types Of Desolvation/Dehydration |
|
|
170 | (1) |
|
4.8 Evolved Gas Analysis (Ega) And Simultaneous Measurements |
|
|
171 | (3) |
|
|
174 | (5) |
|
|
174 | (1) |
|
4.9.2 Characterization Of Amorphous Solids: The Glass Transition Temperature |
|
|
175 | (1) |
|
4.9.3 Quantification Of Amorphous Content Using Dsc |
|
|
176 | (3) |
|
4.10 Purity Determination Using Dsc |
|
|
179 | (4) |
|
|
179 | (1) |
|
4.10.2 Differential Scanning Calorimetry Purity Method |
|
|
180 | (1) |
|
4.10.3 Practical Issues And Potential Interferences |
|
|
180 | (3) |
|
4.11 Excipient Compatibility |
|
|
183 | (4) |
|
4.11.1 Excipient Compatibility Screening Using Dsc |
|
|
184 | (1) |
|
|
184 | (3) |
|
5 Thermal Analysis -- Dielectric Techniques |
|
|
187 | (20) |
|
|
|
|
187 | (1) |
|
5.2 Common Background To The Techniques |
|
|
187 | (1) |
|
5.3 Dielectric Spectroscopy |
|
|
188 | (8) |
|
5.3.1 Interpretation Of Data |
|
|
189 | (1) |
|
5.3.2 Pharmaceutical Examples Of Dielectric Spectroscopy |
|
|
190 | (1) |
|
5.3.3 Analysis Of Water Distribution And Mobility |
|
|
191 | (2) |
|
5.3.4 Investigation Of Molecular Mobility |
|
|
193 | (1) |
|
5.3.5 Formulation, Characterization And Distribution Of Materials |
|
|
194 | (1) |
|
5.3.6 Experimental Issues |
|
|
195 | (1) |
|
5.3.7 Advantages And Disadvantages Of Dielectric Spectroscopy |
|
|
195 | (1) |
|
5.4 Thermally Stimulated Current (Tsc) Spectroscopy |
|
|
196 | (8) |
|
|
196 | (2) |
|
5.4.2 Data Interpretation |
|
|
198 | (1) |
|
5.4.3 Pharmaceutical Examples Of The Use Of Tsc |
|
|
199 | (1) |
|
5.4.4 Characterization Of Amorphous Materials |
|
|
199 | (1) |
|
5.4.5 Characterization Of Polymorphic Materials |
|
|
200 | (3) |
|
5.4.6 Experimental Issues |
|
|
203 | (1) |
|
5.4.7 Advantages And Disadvantages Of Tsc |
|
|
204 | (1) |
|
|
204 | (3) |
|
|
204 | (3) |
|
6 Isothermal Calorimetric Analysis |
|
|
207 | (26) |
|
|
|
207 | (2) |
|
6.1.1 Driving Forces -- Thermodynamics |
|
|
207 | (1) |
|
|
208 | (1) |
|
6.2 Calorimetry: Principle Of Measurement |
|
|
209 | (5) |
|
6.2.1 Heat Conduction Isothermal Microcalorimetry |
|
|
210 | (1) |
|
6.2.2 Power Compensation Isothermal Microcalorimetry |
|
|
210 | (1) |
|
6.2.3 Instrumentation And Common Experiment Methodology |
|
|
211 | (1) |
|
|
212 | (2) |
|
6.3 Applications Of Im For Characterization Of Solid-State Pharmaceuticals |
|
|
214 | (8) |
|
6.3.1 Detection And Characterization Of Disorder In Processed Materials |
|
|
214 | (2) |
|
6.3.2 Production Of Amorphous Forms |
|
|
216 | (1) |
|
6.3.3 Method 1: Direct Detection (Measurement) Of Recrystallization |
|
|
217 | (2) |
|
6.3.4 Method 2: Indirect Detection Of Recrystallization |
|
|
219 | (3) |
|
6.4 Analysis Of Solid-State Form Conversions |
|
|
222 | (1) |
|
6.5 Analysis Of Solid State Chemical Reactions |
|
|
223 | (5) |
|
6.5.1 Solution Phase Reactions |
|
|
223 | (5) |
|
6.6 Excipient Compatibility |
|
|
228 | (5) |
|
|
230 | (3) |
|
7 Calorimetric Methods -- Solution Calorimetry |
|
|
233 | (12) |
|
|
|
233 | (1) |
|
7.2 The Principles Of Solution Calorimetry |
|
|
234 | (3) |
|
7.2.1 Semi-Adiabatic Solution Calorimeters |
|
|
235 | (1) |
|
7.2.2 Heat-Conduction Calorimeters |
|
|
236 | (1) |
|
7.2.3 Sample -- Solvent Mixing |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (4) |
|
|
237 | (2) |
|
7.3.2 Determination Of Degree Of Crystallinity/Amorphous Content |
|
|
239 | (1) |
|
7.3.3 Characterization Of Interactions |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (4) |
|
|
241 | (4) |
|
8 Vapour Sorption And Surface Analysis |
|
|
245 | (42) |
|
|
|
|
245 | (11) |
|
|
245 | (1) |
|
8.1.2 Theory Of Intermolecular Forces |
|
|
246 | (1) |
|
8.1.3 Thermodynamics Of Interfaces |
|
|
247 | (3) |
|
|
250 | (3) |
|
8.1.5 Comparison Of Some Surface Characterization Methods |
|
|
253 | (2) |
|
|
255 | (1) |
|
8.2 Inverse Gas Chromatography |
|
|
256 | (12) |
|
8.2.1 Introduction To Igc |
|
|
256 | (1) |
|
8.2.2 Experimental Methodology |
|
|
257 | (1) |
|
8.2.3 Theoretical Aspects Of Igc |
|
|
257 | (3) |
|
|
260 | (1) |
|
8.2.5 Determination Of Properties Of Various Crystalline Forms |
|
|
261 | (4) |
|
8.2.6 Surface Properties And Powder Processing |
|
|
265 | (1) |
|
8.2.7 Recent Developments |
|
|
266 | (1) |
|
8.2.8 Future Applications |
|
|
266 | (2) |
|
8.3 Dynamic Vapour Sorption |
|
|
268 | (19) |
|
|
268 | (1) |
|
|
268 | (1) |
|
8.3.3 Dynamic Vapour Sorption Instrumentation |
|
|
269 | (1) |
|
8.3.4 Characterization Of Solid State Materials |
|
|
270 | (2) |
|
8.3.5 Gravimetric Dynamic Vapour Sorption Instruments Hyphenated With Other Analytical Methods |
|
|
272 | (1) |
|
8.3.6 Amorphous Material Studies |
|
|
273 | (1) |
|
8.3.7 Solute Permeability And Diffusion Of Packaging Systems |
|
|
274 | (1) |
|
8.3.8 Vapour Pressure Measurement Using Knudsen Effusion |
|
|
275 | (1) |
|
|
276 | (11) |
|
|
287 | (70) |
|
|
|
|
|
287 | (1) |
|
9.2 The Microscope As An Analytical Tool |
|
|
288 | (1) |
|
9.3 Which Microscope To Use? |
|
|
288 | (1) |
|
|
289 | (13) |
|
9.4.1 The Polarizing Light Microscope For Studying Solid-State Properties |
|
|
290 | (3) |
|
9.4.2 Specimen Preparation For Light Microscopy |
|
|
293 | (1) |
|
9.4.3 Characterizing Crystalline And Amorphous Materials Using Polarized Light Microscopy |
|
|
294 | (1) |
|
9.4.4 Determining The Optical Properties Of Crystals |
|
|
295 | (5) |
|
9.4.5 Measuring The Refractive Indices Of Solids |
|
|
300 | (1) |
|
9.4.6 Assessing The Microsolubility Of Solids |
|
|
301 | (1) |
|
|
302 | (3) |
|
|
305 | (1) |
|
9.7 Nonambient Light Microscopy |
|
|
306 | (12) |
|
|
307 | (8) |
|
|
315 | (1) |
|
9.7.3 Freeze-Drying Stage |
|
|
316 | (1) |
|
9.7.4 Examination Of Liquid Crystals Using Nonambient Light Microscopy |
|
|
316 | (2) |
|
9.8 Scanning Electron Microscopy |
|
|
318 | (12) |
|
|
320 | (2) |
|
9.8.2 Specimen Preparation For Sem |
|
|
322 | (1) |
|
9.8.3 Electron Beam -- Specimen Interactions |
|
|
323 | (4) |
|
9.8.4 Environmental Sem And Variable Pressure Sem |
|
|
327 | (2) |
|
9.8.5 Quantitative Analysis Of Sem Images |
|
|
329 | (1) |
|
9.9 Elemental X-Ray Microanalysis |
|
|
330 | (4) |
|
|
331 | (1) |
|
9.9.2 The X-Ray Emission Spectrum |
|
|
332 | (1) |
|
9.9.3 Energy Dispersive X-Ray Microanalysis Of Single Particles And Elemental Mapping |
|
|
332 | (2) |
|
9.10 Atomic Force Microscopy |
|
|
334 | (12) |
|
9.10.1 Atomic Force Microscopy Principle Of Operation |
|
|
335 | (2) |
|
9.10.2 Application Of Afm To Pharmaceutical Analysis |
|
|
337 | (9) |
|
|
346 | (11) |
|
|
347 | (10) |
|
10 Particulate Analysis -- Mechanical Properties |
|
|
357 | (30) |
|
|
|
357 | (1) |
|
10.2 Tableting/Comminution Process |
|
|
358 | (1) |
|
10.3 Indentation And Nanoindentation Testing |
|
|
359 | (1) |
|
10.4 Deformation Behaviour Of Powders |
|
|
360 | (1) |
|
10.5 Evaluation Of Deformation Behaviour And Compressibility |
|
|
361 | (2) |
|
10.5.1 Density Versus Porosity During Compaction |
|
|
361 | (1) |
|
10.5.2 Brittle-Ductile Transitions Of Particulates During Compression |
|
|
362 | (1) |
|
10.5.3 Effect Of Velocity On Mechanical Properties |
|
|
363 | (1) |
|
10.6 Solubility Parameters (Δ) And Cohesive Energy Density (Ced) And Mechanical Properties |
|
|
363 | (6) |
|
10.6.1 Mechanical Properties |
|
|
366 | (3) |
|
10.7 Influence Of Crystal Structure On Mechanical Properties |
|
|
369 | (6) |
|
10.8 Polymorphism And Mechanical Properties |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
378 | (2) |
|
|
380 | (1) |
|
10.12 Amorphous/Crystalline |
|
|
380 | (1) |
|
|
381 | (6) |
|
|
382 | (5) |
|
11 Particulate Analysis -- Particle Size |
|
|
387 | (40) |
|
|
|
387 | (1) |
|
11.2 Particle Size And Shape |
|
|
388 | (1) |
|
11.3 Particle Shape Analysis |
|
|
388 | (1) |
|
|
389 | (2) |
|
11.5 Particle Size Distribution |
|
|
391 | (2) |
|
11.5.1 Normal Distribution |
|
|
391 | (1) |
|
11.5.2 Log Normal Distribution |
|
|
392 | (1) |
|
11.6 The Average Particle Size |
|
|
393 | (2) |
|
|
393 | (1) |
|
|
393 | (1) |
|
|
393 | (1) |
|
11.6.4 Range Of Particle Size |
|
|
394 | (1) |
|
11.7 Particle Size Measurement |
|
|
395 | (11) |
|
|
395 | (1) |
|
1.7.2 Microscopy And Image Analysis |
|
|
396 | (1) |
|
|
397 | (2) |
|
11.7.4 Electrical Sensing Zone |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
400 | (2) |
|
11.7.7 Inertial Impaction |
|
|
402 | (2) |
|
11.7.8 Dynamic Light Scattering |
|
|
404 | (1) |
|
11.7.9 Single Particle Counters |
|
|
405 | (1) |
|
11.8 Surface Area Measurement |
|
|
406 | (2) |
|
|
406 | (1) |
|
|
407 | (1) |
|
11.8.3 Mercury Porosimetry |
|
|
408 | (1) |
|
11.9 Particle Size Reduction |
|
|
408 | (2) |
|
11.10 Particle Size Assessment And Pharmaceutical Development |
|
|
410 | (8) |
|
|
410 | (1) |
|
11.10.2 Instrument Calibration And Qualification |
|
|
411 | (1) |
|
11.10.3 Selection Of Particle Sizing Techniques |
|
|
412 | (3) |
|
11.10.4 Method Development And Validation |
|
|
415 | (2) |
|
11.10.5 Regulatory Considerations |
|
|
417 | (1) |
|
11.11 A Case Study: Medicinal Aerosols |
|
|
418 | (3) |
|
11.11.1 Particle Size And Lung Deposition |
|
|
418 | (1) |
|
11.11.2 Measurement Of Api And Excipient Particle Size |
|
|
418 | (1) |
|
11.11.3 Measurement Of Aerodynamic Particle Size |
|
|
419 | (1) |
|
11.11.4 Setting Up Particle Size Specifications |
|
|
419 | (2) |
|
|
421 | (6) |
|
|
422 | (5) |
|
12 Computational Polymorph Prediction |
|
|
427 | (24) |
|
|
|
|
427 | (3) |
|
12.1.1 Interpretation Of Different Crystal Energy Landscapes |
|
|
428 | (2) |
|
12.2 Factors Limiting The Reliability Of Computed Energy Landscapes |
|
|
430 | (5) |
|
12.2.1 Molecular Conformational Flexibility |
|
|
430 | (2) |
|
12.2.2 The Intermolecular Forces |
|
|
432 | (2) |
|
|
434 | (1) |
|
12.3 Are Some Crystal Structures Easier To Predict Than Others? |
|
|
435 | (2) |
|
12.4 Illustrative Examples Of Crystal Energy Landscapes For Pharmaceuticals |
|
|
437 | (5) |
|
12.4.1 Simple Case Examples Of Uracils Illustrating Types Of Energy Diagrams |
|
|
437 | (1) |
|
12.4.2 Examples Where Computational Studies Have Aided The Discovery Of New Polymorphs |
|
|
438 | (2) |
|
12.4.3 Indications Of Solvate Formation |
|
|
440 | (1) |
|
12.4.4 Rationalization Of Disorder And Complex Solid State |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
444 | (7) |
|
|
444 | (7) |
|
13 Patenting Of Inventions Relating To Polymorphs |
|
|
451 | (22) |
|
|
|
|
|
452 | (2) |
|
|
452 | (1) |
|
13.1.2 Main Patentability Criteria For Polymorph Inventions |
|
|
452 | (2) |
|
|
454 | (4) |
|
13.2.1 Nomenclature Of Polymorphs And Its Consequences (Threlfall 1995; Bernstein 2002: Chapter 1.2.3) |
|
|
454 | (1) |
|
13.2.2 Clear Definition Of Polymorphs In Patent Claims |
|
|
455 | (2) |
|
|
457 | (1) |
|
13.2.4 Product-By-Process Definition |
|
|
458 | (1) |
|
|
458 | (2) |
|
13.3.1 The Novelty Requirement |
|
|
458 | (1) |
|
13.3.2 The Novelty Of A Polymorph |
|
|
458 | (2) |
|
|
460 | (4) |
|
13.4.1 The Requirement Of Inventive Step |
|
|
460 | (1) |
|
13.4.2 Determination Of The Closest Prior Art |
|
|
460 | (1) |
|
13.4.3 The Difference And The Resulting Technical Effect |
|
|
461 | (1) |
|
13.4.4 The Objective Problem And The Step Of Checking If The Problem Has Been Solved |
|
|
461 | (1) |
|
13.4.5 The Assessment Of Inventive Step |
|
|
462 | (2) |
|
13.5 Sufficiency Of Disclosure |
|
|
464 | (2) |
|
|
466 | (1) |
|
|
467 | (6) |
|
|
467 | (1) |
|
|
467 | (1) |
|
13.7.3 Dependence And Freedom Of Use |
|
|
468 | (1) |
|
13.7.4 Defensive Publication |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (4) |
|
14 A `Roadmap' To Solid Form Selection |
|
|
473 | (20) |
|
|
|
473 | (2) |
|
14.2 Summary Of Solid-Form Screening Process |
|
|
475 | (10) |
|
14.2.1 Development Of Amorphous Materials |
|
|
477 | (1) |
|
|
477 | (3) |
|
|
480 | (1) |
|
14.2.4 Evaporative Techniques |
|
|
480 | (1) |
|
14.2.5 Scale-Up And Analysis |
|
|
481 | (2) |
|
|
483 | (1) |
|
14.2.7 Solid-State Stability |
|
|
484 | (1) |
|
|
484 | (1) |
|
14.2.9 Effects Of Processing |
|
|
485 | (1) |
|
|
485 | (5) |
|
14.3.1 Early Polymorph Screening Prior To Nomination |
|
|
485 | (1) |
|
14.3.2 Late Polymorph Screening During Development |
|
|
486 | (1) |
|
14.3.3 Evaporative Techniques |
|
|
487 | (1) |
|
14.3.4 Cooling Crystallization |
|
|
487 | (1) |
|
14.3.5 Antisolvent Techniques |
|
|
487 | (1) |
|
|
487 | (2) |
|
14.3.7 Regulatory Guidance |
|
|
489 | (1) |
|
|
490 | (3) |
|
|
491 | (2) |
Index |
|
493 | |