Atjaunināt sīkdatņu piekrišanu

Solid State Characterization of Pharmaceuticals [Hardback]

Edited by (AstraZeneca Pharmaceuticals,UK), Edited by (AstraZeneca R&D, Sweden)
  • Formāts: Hardback, 528 pages, height x width x depth: 251x174x34 mm, weight: 1012 g
  • Izdošanas datums: 18-Apr-2011
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1405134941
  • ISBN-13: 9781405134941
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 239,75 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 528 pages, height x width x depth: 251x174x34 mm, weight: 1012 g
  • Izdošanas datums: 18-Apr-2011
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1405134941
  • ISBN-13: 9781405134941
Citas grāmatas par šo tēmu:
The field of solid state characterization is central to the pharmaceutical industry, as drug products are, in an overwhelming number of cases, produced as solid materials. Selection of the optimum solid form is a critical aspect of the development of pharmaceutical compounds, due to their ability to exist in more than one form or crystal structure (polymorphism). These polymorphs exhibit different physical properties which can affect their biopharmaceutical properties.

This book provides an up-to-date review of the current techniques used to characterize pharmaceutical solids. Ensuring balanced, practical coverage with industrial relevance, it covers a range of key applications in the field. 

The following topics are included:    

  • Physical properties and processes
  • Thermodynamics
  • Intellectual  guidance
  • X-ray diffraction
  • Spectroscopy Microscopy
  • Particle sizing
  • Mechanical properties
  • Vapour sorption
  • Thermal analysis & Calorimetry
  • Polymorph prediction
  • Form selection
List of Contributors
xv
About the Editors xvii
Preface xix
1 Introduction To The Solid State -- Physical Properties And Processes
1(34)
Ingvar Ymen
1.1 Introduction
1(6)
1.1.1 The Gas/Vapour And Liquid States
1(2)
1.1.2 The Crystalline State
3(2)
1.1.3 The Glassy State
5(2)
1.2 Neutral Pharmaceutical Molecules
7(2)
1.3 Thermodynamics And Phase Diagrams
9(6)
1.3.1 Gibbs Phase Rule
11(1)
1.3.2 One-Component (Unary) Systems
12(1)
1.3.3 Two-Component (Binary) Systems
13(1)
1.3.4 Three-Component (Ternary) Systems
14(1)
1.4 Neutral Pharmaceutical Molecules In The Solid State
15(1)
1.5 Salt Formation And Acid-Base Equilibrium
16(4)
1.6 Polymorphs, Solvates And Mixed Crystals
20(6)
1.6.1 Mixed Crystals
22(1)
1.6.2 Solvates And Hydrates
23(3)
1.7 Phase Transitions And Kinetics
26(4)
1.7.1 Crystallization
27(2)
1.7.2 Solid-To-Solid Phase Transitions
29(1)
1.8 Screening For `Polymorphs' (Ansolvates And Solvates)
30(1)
1.9 Summary
31(1)
1.10 Acknowledgements
31(4)
References
31(4)
2 X-Ray Diffraction
35(36)
Chris J. Gilmore
2.1 Introduction
35(1)
2.2 Generation And Properties Of X-Rays
35(2)
2.2.1 The Synchrotron
36(1)
2.3 Crystal, Lattices, Unit Cells And Symmetry
37(7)
2.3.1 Point Group Symmetry
37(1)
2.3.2 Unit Cells And Crystal Lattices
38(2)
2.3.3 Miller Indices
40(1)
2.3.4 Space Group Symmetry
41(2)
2.3.5 The Asymmetric Unit
43(1)
2.4 The Interaction Of X-Rays With Crystals
44(3)
2.4.1 X-Rays And Atoms
44(1)
2.4.2 X-Rays And Crystals
45(1)
2.4.3 Determining Space Groups
46(1)
2.5 Collecting Intensity Data For Single Crystals
47(2)
2.6 Determining Crystal Structures
49(6)
2.6.1 The Fundamental Equations Of Crystallography And The Phase Problem
49(2)
2.6.2 Data Resolution And Completeness
51(1)
2.6.3 Methods Of Solving Crystal Structures
51(1)
2.6.4 Completing The Structure
52(1)
2.6.5 Refinement And Validation
52(1)
2.6.6 Small Crystals And The Synchrotron
53(1)
2.6.7 Databases
53(1)
2.6.8 Absolute Configuration
54(1)
2.6.9 Polymorphism
55(1)
2.7 Powder Diffraction
55(10)
2.7.1 Preferred Orientation
57(1)
2.7.2 Data Collection
58(1)
2.7.3 Qualitative Analysis: Pattern Matching
59(1)
2.7.4 Compositions Of Mixtures: Quantitative Analysis
60(1)
2.7.5 Structure Solution From Powders
61(2)
2.7.6 Powder Diffraction And Polymorphs
63(2)
2.7.7 Nonambient Conditions
65(1)
2.8 Amorphous Powders
65(1)
2.9 Particle Size
66(1)
2.10 Other Radiations: Neutrons And Electrons
67(4)
2.10.1 Neutrons
67(2)
2.10.2 Electrons
69(1)
References
69(2)
3 Spectroscopic Characterization
71(64)
Andrew O'Neil
Howell Edwards
3.1 Introduction And Theory
71(1)
3.2 Electromagnetic Radiation
72(2)
3.3 Vibrational Spectroscopy
74(2)
3.3.1 Basic Instrument Configuration For Spectroscopy
75(1)
3.4 Mid- And Near-Infrared Spectroscopy
76(5)
3.4.1 Instrumentation
77(1)
3.4.2 Attenuated Total Reflectance Spectrometry
78(1)
3.4.3 Applications
79(1)
3.4.4 Pharmaceutical Examples Of The Use Of Atr-Ft-Ir Spectroscopy
79(2)
3.5 Near-Infrared Spectroscopy
81(17)
3.5.1 Theory
81(4)
3.5.2 Instrumentation
85(2)
3.5.3 Qualitative And Quantitative Data Analysis
87(2)
3.5.4 Pharmaceutical Applications
89(2)
3.5.5 Polymorphism
91(1)
3.5.6 Pseudopolymorphism, Hydrates And Solvates
91(1)
3.5.7 Authentication Of Medicines And Detection Of Counterfeit And Clone Versions
92(1)
3.5.8 Pharmaceutical Examples Of The Use Of Nir Spectrometry
92(6)
3.6 Raman Spectroscopy
98(14)
3.6.1 Theory
98(4)
3.6.2 Instrumentation
102(1)
3.6.3 Pharmaceutical Applications
102(1)
3.6.4 Raman Spectrometry For Process Monitoring, Degradation, Stability And Crystallization
103(2)
3.6.5 Polymorphism
105(1)
3.6.6 Pseudopolymorphism
106(2)
3.6.7 Process Analytical Technology
108(1)
3.6.8 Raman Spectroscopy: Pharmaceutical Examples
109(3)
3.7 Chemical Imaging And Mapping Microscopy
112(5)
3.8 Nuclear Magnetic Resonance Spectroscopy
117(7)
3.8.1 Pharmaceutical Applications
122(1)
3.8.2 General Applications
122(1)
3.8.3 Polymorphism
123(1)
3.8.4 Drug Substance And Dosage Form Analysis
124(1)
3.8.5 Conformation, Stereochemistry And Hydrogen Bonding Interactions
124(1)
3.9 Terahertz Pulsed Spectroscopy
124(11)
3.9.1 Theory
124(1)
3.9.2 Instrumentation
124(2)
3.9.3 Sample And Instrument Preparation
126(1)
3.9.4 Recent Developments In Instrumentation
127(1)
3.9.5 Pharmaceutical Applications
127(3)
References
130(5)
4 Thermal Analysis -- Conventional Techniques
135(52)
Mark Saunders
Paul Gabbott
4.1 Introduction
135(1)
4.2 Differential Scanning Calorimetry (Dsc)
135(11)
4.2.1 Heat Flow Measurements
136(1)
4.2.2 Derivative Curves
137(1)
4.2.3 General Practical Points
137(1)
4.2.4 Encapsulation
138(1)
4.2.5 Temperature Range
139(1)
4.2.6 Scan Rate
140(1)
4.2.7 The Instrumental Transient
140(1)
4.2.8 Calibration
140(2)
4.2.9 Factors Affecting Calibration
142(1)
4.2.10 Double Furnace Design
142(1)
4.2.11 Single Furnace Designs
143(1)
4.2.12 Differential Thermal Analysis (Dta)
144(1)
4.2.13 Modulated Temperature Profiles
144(1)
4.2.14 Stepwise Methods
145(1)
4.3 Thermogravimetric Analysis (Tga)
146(2)
4.3.1 Instrument Design
146(1)
4.3.2 Tga Calibration
147(1)
4.3.3 Practical Points
147(1)
4.3.4 Sample Interpretation
148(1)
4.4 Dynamic Mechanical Analysis (Dma)
148(6)
4.4.1 What Is Dma?
148(2)
4.4.2 How Does A Dma Work?
150(4)
4.5 Determining The Melting Behaviour Of Crystalline Solids
154(2)
4.5.1 Evaluating The Melting Point Transition
155(1)
4.5.2 Melting Point Determination For Identification Of Samples
155(1)
4.6 Polymorphism
156(12)
4.6.1 Significance Of Pharmaceutical Polymorphism
156(1)
4.6.2 Thermodynamic And Kinetic Aspects Of Polymorphism: Enantiotropy And Monotropy
157(1)
4.6.3 Characterization Of Polymorphs By Dsc
158(3)
4.6.4 Determining Polymorphic Purity By Dsc
161(6)
4.6.5 Interpretation Of Dsc Thermograms Of Samples Exhibiting Polymorphism
167(1)
4.7 Solvates And Hydrates (Pseudopolymorphism)
168(3)
4.7.1 Factors Influencing Dsc Curves Of Hydrates And Solvates
168(2)
4.7.2 Types Of Desolvation/Dehydration
170(1)
4.8 Evolved Gas Analysis (Ega) And Simultaneous Measurements
171(3)
4.9 Amorphous Content
174(5)
4.9.1 Introduction
174(1)
4.9.2 Characterization Of Amorphous Solids: The Glass Transition Temperature
175(1)
4.9.3 Quantification Of Amorphous Content Using Dsc
176(3)
4.10 Purity Determination Using Dsc
179(4)
4.10.1 Types Of Impurity
179(1)
4.10.2 Differential Scanning Calorimetry Purity Method
180(1)
4.10.3 Practical Issues And Potential Interferences
180(3)
4.11 Excipient Compatibility
183(4)
4.11.1 Excipient Compatibility Screening Using Dsc
184(1)
References
184(3)
5 Thermal Analysis -- Dielectric Techniques
187(20)
Susan Barker
Milan D. Antonijevic
5.1 General Introduction
187(1)
5.2 Common Background To The Techniques
187(1)
5.3 Dielectric Spectroscopy
188(8)
5.3.1 Interpretation Of Data
189(1)
5.3.2 Pharmaceutical Examples Of Dielectric Spectroscopy
190(1)
5.3.3 Analysis Of Water Distribution And Mobility
191(2)
5.3.4 Investigation Of Molecular Mobility
193(1)
5.3.5 Formulation, Characterization And Distribution Of Materials
194(1)
5.3.6 Experimental Issues
195(1)
5.3.7 Advantages And Disadvantages Of Dielectric Spectroscopy
195(1)
5.4 Thermally Stimulated Current (Tsc) Spectroscopy
196(8)
5.4.1 Experimental Modes
196(2)
5.4.2 Data Interpretation
198(1)
5.4.3 Pharmaceutical Examples Of The Use Of Tsc
199(1)
5.4.4 Characterization Of Amorphous Materials
199(1)
5.4.5 Characterization Of Polymorphic Materials
200(3)
5.4.6 Experimental Issues
203(1)
5.4.7 Advantages And Disadvantages Of Tsc
204(1)
5.5 Overall Conclusions
204(3)
References
204(3)
6 Isothermal Calorimetric Analysis
207(26)
Andrew Hills
6.1 Introduction
207(2)
6.1.1 Driving Forces -- Thermodynamics
207(1)
6.1.2 Kinetic Factors
208(1)
6.2 Calorimetry: Principle Of Measurement
209(5)
6.2.1 Heat Conduction Isothermal Microcalorimetry
210(1)
6.2.2 Power Compensation Isothermal Microcalorimetry
210(1)
6.2.3 Instrumentation And Common Experiment Methodology
211(1)
6.2.4 Calibration
212(2)
6.3 Applications Of Im For Characterization Of Solid-State Pharmaceuticals
214(8)
6.3.1 Detection And Characterization Of Disorder In Processed Materials
214(2)
6.3.2 Production Of Amorphous Forms
216(1)
6.3.3 Method 1: Direct Detection (Measurement) Of Recrystallization
217(2)
6.3.4 Method 2: Indirect Detection Of Recrystallization
219(3)
6.4 Analysis Of Solid-State Form Conversions
222(1)
6.5 Analysis Of Solid State Chemical Reactions
223(5)
6.5.1 Solution Phase Reactions
223(5)
6.6 Excipient Compatibility
228(5)
References
230(3)
7 Calorimetric Methods -- Solution Calorimetry
233(12)
Simon Gaisford
7.1 Introduction
233(1)
7.2 The Principles Of Solution Calorimetry
234(3)
7.2.1 Semi-Adiabatic Solution Calorimeters
235(1)
7.2.2 Heat-Conduction Calorimeters
236(1)
7.2.3 Sample -- Solvent Mixing
236(1)
7.2.4 Calibration
237(1)
7.3 Applications
237(4)
7.3.1 Polymorphism
237(2)
7.3.2 Determination Of Degree Of Crystallinity/Amorphous Content
239(1)
7.3.3 Characterization Of Interactions
240(1)
7.3.4 Other Applications
240(1)
7.4 Summary
241(4)
References
241(4)
8 Vapour Sorption And Surface Analysis
245(42)
Jerry Y. Y. Heng
Daryl R. Williams
8.1 Introduction
245(11)
8.1.1 Background
245(1)
8.1.2 Theory Of Intermolecular Forces
246(1)
8.1.3 Thermodynamics Of Interfaces
247(3)
8.1.4 Surface Energy
250(3)
8.1.5 Comparison Of Some Surface Characterization Methods
253(2)
8.1.6 Solid State
255(1)
8.2 Inverse Gas Chromatography
256(12)
8.2.1 Introduction To Igc
256(1)
8.2.2 Experimental Methodology
257(1)
8.2.3 Theoretical Aspects Of Igc
257(3)
8.2.4 Igc Technique
260(1)
8.2.5 Determination Of Properties Of Various Crystalline Forms
261(4)
8.2.6 Surface Properties And Powder Processing
265(1)
8.2.7 Recent Developments
266(1)
8.2.8 Future Applications
266(2)
8.3 Dynamic Vapour Sorption
268(19)
8.3.1 Introduction
268(1)
8.3.2 Fundamentals
268(1)
8.3.3 Dynamic Vapour Sorption Instrumentation
269(1)
8.3.4 Characterization Of Solid State Materials
270(2)
8.3.5 Gravimetric Dynamic Vapour Sorption Instruments Hyphenated With Other Analytical Methods
272(1)
8.3.6 Amorphous Material Studies
273(1)
8.3.7 Solute Permeability And Diffusion Of Packaging Systems
274(1)
8.3.8 Vapour Pressure Measurement Using Knudsen Effusion
275(1)
References
276(11)
9 Microscopy
287(70)
Gary Nichols
Shen Luk
Clive Roberts
9.1 Introduction
287(1)
9.2 The Microscope As An Analytical Tool
288(1)
9.3 Which Microscope To Use?
288(1)
9.4 Light Microscopy
289(13)
9.4.1 The Polarizing Light Microscope For Studying Solid-State Properties
290(3)
9.4.2 Specimen Preparation For Light Microscopy
293(1)
9.4.3 Characterizing Crystalline And Amorphous Materials Using Polarized Light Microscopy
294(1)
9.4.4 Determining The Optical Properties Of Crystals
295(5)
9.4.5 Measuring The Refractive Indices Of Solids
300(1)
9.4.6 Assessing The Microsolubility Of Solids
301(1)
9.5 Crystal Shape
302(3)
9.6 Particle Size
305(1)
9.7 Nonambient Light Microscopy
306(12)
9.7.1 Thermomicroscopy
307(8)
9.7.2 Humidity Stage
315(1)
9.7.3 Freeze-Drying Stage
316(1)
9.7.4 Examination Of Liquid Crystals Using Nonambient Light Microscopy
316(2)
9.8 Scanning Electron Microscopy
318(12)
9.8.1 How The Sem Works
320(2)
9.8.2 Specimen Preparation For Sem
322(1)
9.8.3 Electron Beam -- Specimen Interactions
323(4)
9.8.4 Environmental Sem And Variable Pressure Sem
327(2)
9.8.5 Quantitative Analysis Of Sem Images
329(1)
9.9 Elemental X-Ray Microanalysis
330(4)
9.9.1 Detecting X-Rays
331(1)
9.9.2 The X-Ray Emission Spectrum
332(1)
9.9.3 Energy Dispersive X-Ray Microanalysis Of Single Particles And Elemental Mapping
332(2)
9.10 Atomic Force Microscopy
334(12)
9.10.1 Atomic Force Microscopy Principle Of Operation
335(2)
9.10.2 Application Of Afm To Pharmaceutical Analysis
337(9)
9.11 Future Perspectives
346(11)
References
347(10)
10 Particulate Analysis -- Mechanical Properties
357(30)
Ron J. Roberts
10.1 Introduction
357(1)
10.2 Tableting/Comminution Process
358(1)
10.3 Indentation And Nanoindentation Testing
359(1)
10.4 Deformation Behaviour Of Powders
360(1)
10.5 Evaluation Of Deformation Behaviour And Compressibility
361(2)
10.5.1 Density Versus Porosity During Compaction
361(1)
10.5.2 Brittle-Ductile Transitions Of Particulates During Compression
362(1)
10.5.3 Effect Of Velocity On Mechanical Properties
363(1)
10.6 Solubility Parameters (Δ) And Cohesive Energy Density (Ced) And Mechanical Properties
363(6)
10.6.1 Mechanical Properties
366(3)
10.7 Influence Of Crystal Structure On Mechanical Properties
369(6)
10.8 Polymorphism And Mechanical Properties
375(2)
10.9 Hydrates/Anhydrous
377(1)
10.10 Salts
378(2)
10.11 Co-Crystals
380(1)
10.12 Amorphous/Crystalline
380(1)
10.13 Conclusion
381(6)
References
382(5)
11 Particulate Analysis -- Particle Size
387(40)
Xian-Ming Zeng
11.1 Introduction
387(1)
11.2 Particle Size And Shape
388(1)
11.3 Particle Shape Analysis
388(1)
11.4 Particle Diameter
389(2)
11.5 Particle Size Distribution
391(2)
11.5.1 Normal Distribution
391(1)
11.5.2 Log Normal Distribution
392(1)
11.6 The Average Particle Size
393(2)
11.6.1 The Median
393(1)
11.6.2 The Mode
393(1)
11.6.3 Mean Diameters
393(1)
11.6.4 Range Of Particle Size
394(1)
11.7 Particle Size Measurement
395(11)
11.7.1 Sieve Analysis
395(1)
1.7.2 Microscopy And Image Analysis
396(1)
11.7.3 Laser Diffraction
397(2)
11.7.4 Electrical Sensing Zone
399(1)
11.7.5 Time Of Flight
399(1)
11.7.6 Sedimentation
400(2)
11.7.7 Inertial Impaction
402(2)
11.7.8 Dynamic Light Scattering
404(1)
11.7.9 Single Particle Counters
405(1)
11.8 Surface Area Measurement
406(2)
11.8.1 Gas Adsorption
406(1)
11.8.2 Permeatry Methods
407(1)
11.8.3 Mercury Porosimetry
408(1)
11.9 Particle Size Reduction
408(2)
11.10 Particle Size Assessment And Pharmaceutical Development
410(8)
11.10.1 Sampling Issues
410(1)
11.10.2 Instrument Calibration And Qualification
411(1)
11.10.3 Selection Of Particle Sizing Techniques
412(3)
11.10.4 Method Development And Validation
415(2)
11.10.5 Regulatory Considerations
417(1)
11.11 A Case Study: Medicinal Aerosols
418(3)
11.11.1 Particle Size And Lung Deposition
418(1)
11.11.2 Measurement Of Api And Excipient Particle Size
418(1)
11.11.3 Measurement Of Aerodynamic Particle Size
419(1)
11.11.4 Setting Up Particle Size Specifications
419(2)
11.12 Concluding Remarks
421(6)
References
422(5)
12 Computational Polymorph Prediction
427(24)
Sarah L. Price
Louise S. Price
12.1 Introduction
427(3)
12.1.1 Interpretation Of Different Crystal Energy Landscapes
428(2)
12.2 Factors Limiting The Reliability Of Computed Energy Landscapes
430(5)
12.2.1 Molecular Conformational Flexibility
430(2)
12.2.2 The Intermolecular Forces
432(2)
12.2.3 The Search Method
434(1)
12.3 Are Some Crystal Structures Easier To Predict Than Others?
435(2)
12.4 Illustrative Examples Of Crystal Energy Landscapes For Pharmaceuticals
437(5)
12.4.1 Simple Case Examples Of Uracils Illustrating Types Of Energy Diagrams
437(1)
12.4.2 Examples Where Computational Studies Have Aided The Discovery Of New Polymorphs
438(2)
12.4.3 Indications Of Solvate Formation
440(1)
12.4.4 Rationalization Of Disorder And Complex Solid State
441(1)
12.5 Property Prediction
442(1)
12.6 Future Prospects
443(1)
12.7 Acknowledgements
444(7)
References
444(7)
13 Patenting Of Inventions Relating To Polymorphs
451(22)
Bertrand Gellie
Claire Johnson
Thomas Weisbrod
13.1 Introduction
452(2)
13.1.1 Patenting Process
452(1)
13.1.2 Main Patentability Criteria For Polymorph Inventions
452(2)
13.2 Clarity
454(4)
13.2.1 Nomenclature Of Polymorphs And Its Consequences (Threlfall 1995; Bernstein 2002:
Chapter 1.2.3)
454(1)
13.2.2 Clear Definition Of Polymorphs In Patent Claims
455(2)
13.2.3 Crystal Habit
457(1)
13.2.4 Product-By-Process Definition
458(1)
13.3 Novelty
458(2)
13.3.1 The Novelty Requirement
458(1)
13.3.2 The Novelty Of A Polymorph
458(2)
13.4 Inventive Step
460(4)
13.4.1 The Requirement Of Inventive Step
460(1)
13.4.2 Determination Of The Closest Prior Art
460(1)
13.4.3 The Difference And The Resulting Technical Effect
461(1)
13.4.4 The Objective Problem And The Step Of Checking If The Problem Has Been Solved
461(1)
13.4.5 The Assessment Of Inventive Step
462(2)
13.5 Sufficiency Of Disclosure
464(2)
13.6 Unity Of Invention
466(1)
13.7 Patenting Strategy
467(6)
13.7.1 What To Patent?
467(1)
13.7.2 When To Patent?
467(1)
13.7.3 Dependence And Freedom Of Use
468(1)
13.7.4 Defensive Publication
468(1)
Notes
469(1)
References
469(4)
14 A `Roadmap' To Solid Form Selection
473(20)
Richard Storey
14.1 Introduction
473(2)
14.2 Summary Of Solid-Form Screening Process
475(10)
14.2.1 Development Of Amorphous Materials
477(1)
14.2.2 Salt Screening
477(3)
14.2.3 Vapour Diffusion
480(1)
14.2.4 Evaporative Techniques
480(1)
14.2.5 Scale-Up And Analysis
481(2)
14.2.6 Hydrates
483(1)
14.2.7 Solid-State Stability
484(1)
14.2.8 Dissolution Rate
484(1)
14.2.9 Effects Of Processing
485(1)
14.3 Polymorph Screening
485(5)
14.3.1 Early Polymorph Screening Prior To Nomination
485(1)
14.3.2 Late Polymorph Screening During Development
486(1)
14.3.3 Evaporative Techniques
487(1)
14.3.4 Cooling Crystallization
487(1)
14.3.5 Antisolvent Techniques
487(1)
14.3.6 Sampling
487(2)
14.3.7 Regulatory Guidance
489(1)
14.4 Conclusion
490(3)
References
491(2)
Index 493
Richard A. Storey, AstraZeneca Pharmaceuticals, Macclesfield, UK Ingvar Ymén, AstraZeneca R&D, Södertälje, Sweden