Preface to the Fifth Edition |
|
xv | |
Preface to the Fourth Edition |
|
xvii | |
Authors |
|
xix | |
Contributors |
|
xxi | |
|
List of Units, Prefixes, and Constants |
|
|
xxiii | |
|
Chapter 1 An Introduction To Crystal Structures |
|
|
1 | (64) |
|
|
1 | (1) |
|
1.2 Lattices and Unit Cells |
|
|
1 | (2) |
|
|
2 | (1) |
|
1.2.2 One- and Two-Dimensional Unit Cells |
|
|
2 | (1) |
|
|
3 | (4) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.5 Inversion Axes and the Identity Element |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (3) |
|
1.4.1 Translational Symmetry Elements |
|
|
8 | (2) |
|
1.5 Three-Dimensional Lattices and Their Unit Cells |
|
|
10 | (8) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (6) |
|
1.6.1 Body-Centred and Primitive Structures |
|
|
22 | (2) |
|
1.7 Crystal Planes--Miller Indices |
|
|
24 | (2) |
|
1.7.1 Interplanar Spacings |
|
|
25 | (1) |
|
|
26 | (27) |
|
1.8.1 Ionic Solids with Formula MX |
|
|
27 | (7) |
|
1.8.2 Solids with General Formula MX |
|
|
34 | (4) |
|
1.8.3 Other Important Crystal Structures |
|
|
38 | (4) |
|
|
42 | (5) |
|
1.8.5 Extended Covalent Arrays |
|
|
47 | (1) |
|
1.8.6 Bonding in Crystals |
|
|
48 | (2) |
|
|
50 | (1) |
|
1.8.8 Molecular Structures |
|
|
50 | (3) |
|
|
53 | (7) |
|
|
53 | (2) |
|
1.9.2 Calculating Lattice Energies |
|
|
55 | (4) |
|
1.9.2.1 Computer Modeling |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (5) |
|
Chapter 2 Physical Methods For Characterizing Solids |
|
|
65 | (66) |
|
|
|
65 | (1) |
|
|
66 | (5) |
|
2.2.1 Generation of X-Rays |
|
|
66 | (2) |
|
2.2.2 Diffraction of X-Rays |
|
|
68 | (3) |
|
2.3 Single Crystal X-Ray Diffraction |
|
|
71 | (6) |
|
2.3.1 The Importance of Intensities |
|
|
71 | (3) |
|
2.3.2 Solving Single Crystal Structures |
|
|
74 | (2) |
|
2.3.3 High-Energy X-Ray Diffraction |
|
|
76 | (1) |
|
|
77 | (11) |
|
2.4.1 Powder Diffraction Patterns |
|
|
77 | (1) |
|
2.4.2 Absences Due to Lattice Centring |
|
|
78 | (4) |
|
2.4.3 Systematic Absences Due to Screw Axes and Glide Planes |
|
|
82 | (2) |
|
2.4.4 Uses of Powder X-Ray Diffraction |
|
|
84 | (1) |
|
2.4.4.1 Identification of Unknowns and Phase Purity |
|
|
84 | (1) |
|
|
84 | (1) |
|
2.4.4.3 Following Reactions and Phase Diagrams |
|
|
85 | (1) |
|
2.4.4.4 Structure Determination and the Rietveld Method |
|
|
86 | (2) |
|
|
88 | (3) |
|
2.5.1 Uses of Neutron Diffraction |
|
|
89 | (2) |
|
2.6 X-Ray Microscopy/X-Ray Computed Tomography |
|
|
91 | (4) |
|
|
95 | (9) |
|
2.7.1 Scanning Electron Microscopy, SEM |
|
|
96 | (2) |
|
2.7.2 Transmission Electron Microscopy, TEM |
|
|
98 | (2) |
|
2.7.3 Cryogenic Electron Microscopy (Cryo EM) |
|
|
100 | (1) |
|
2.7.4 Energy Dispersive X-Ray Analysis, EDX (EDAX) |
|
|
101 | (1) |
|
2.7.5 Scanning Transmission Electron Microscopy, STEM |
|
|
101 | (2) |
|
2.7.6 Electron Energy Loss Spectroscopy, EELS |
|
|
103 | (1) |
|
|
104 | (1) |
|
2.8 Scanning Probe Microscopy, SPM |
|
|
104 | (2) |
|
2.8.1 Scanning Tunnelling Microscopy, STM |
|
|
105 | (1) |
|
2.9 Atomic Force Microscopy, AFM |
|
|
106 | (2) |
|
2.10 X-Ray Absorption Spectroscopy, XAS |
|
|
108 | (7) |
|
2.10.1 Extended X-Ray Absorption Fine Structure, EXAFS |
|
|
108 | (6) |
|
2.10.2 X-Ray Absorption Near-Edge Structure, XANES, and Near-Edge X-Ray Absorption Fine Structure, NEXAFS |
|
|
114 | (1) |
|
2.11 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
115 | (2) |
|
2.12 Solid-State Nuclear Magnetic Resonance Spectroscopy |
|
|
117 | (4) |
|
|
121 | (2) |
|
2.13.1 Differential Thermal Analysis, DTA |
|
|
121 | (1) |
|
2.13.2 Thermogravimetric Analysis, TGA |
|
|
121 | (1) |
|
2.13.3 Differential Scanning Calorimetry, DSC |
|
|
122 | (1) |
|
2.13.4 Simultaneous Thermal Analysis, STA, and Coupling with Spectroscopic or Spectrometric Methods |
|
|
122 | (1) |
|
2.14 Temperature Programmed Reduction, TPR |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (3) |
|
|
127 | (4) |
|
Chapter 3 Synthesis Of Solids |
|
|
131 | (28) |
|
|
131 | (1) |
|
3.2 High-Temperature Ceramic Methods |
|
|
132 | (6) |
|
3.2.1 Direct Heating of Solids |
|
|
132 | (3) |
|
|
135 | (1) |
|
|
136 | (2) |
|
3.3 Mechanochemical Synthesis |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (2) |
|
3.6 High-Pressure Methods |
|
|
142 | (4) |
|
3.6.1 Hydrothermal Methods |
|
|
142 | (1) |
|
3.6.2 Using High-Pressure Gases |
|
|
143 | (2) |
|
3.6.3 Using Hydrostatic Pressures |
|
|
145 | (1) |
|
|
146 | (1) |
|
3.7 Chemical Vapour Deposition |
|
|
146 | (4) |
|
3.7.1 Preparation of Semiconductors |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
3.8 Preparing Single Crystals |
|
|
150 | (4) |
|
|
150 | (1) |
|
3.8.2 Chemical Vapour Transport |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (1) |
|
Chapter 4 Solids: Bonding And Electronic Properties |
|
|
159 | (28) |
|
|
|
159 | (1) |
|
4.2 Bonding in Solids: Free-Electron Theory |
|
|
159 | (7) |
|
4.2.1 Electronic Conductivity |
|
|
164 | (2) |
|
4.3 Bonding in Solids: Molecular Orbital Theory |
|
|
166 | (6) |
|
|
171 | (1) |
|
4.4 Diamond, Si, and Ge: Semiconductors |
|
|
172 | (8) |
|
|
175 | (1) |
|
4.4.2 Doped Semiconductors |
|
|
176 | (1) |
|
4.4.3 p--n Junction and Field Effect Transistors |
|
|
177 | (3) |
|
4.5 Bands in Compounds: Gallium Arsenide |
|
|
180 | (1) |
|
4.6 Bands in d-Block Compounds: Transition Metal Monoxides |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (3) |
|
Chapter 5 Defects And Nonstoichiometry |
|
|
187 | (38) |
|
|
187 | (1) |
|
5.2 Point Defects and Their Concentration |
|
|
187 | (8) |
|
|
187 | (3) |
|
5.2.2 Concentration of Defects |
|
|
190 | (4) |
|
|
194 | (1) |
|
5.2.4 Defect Nomenclature |
|
|
194 | (1) |
|
5.3 Nonstoichiometric Compounds |
|
|
195 | (10) |
|
5.3.1 Nonstoichiometry in Wustite (FeO) and MO-Type Oxides |
|
|
197 | (4) |
|
|
201 | (1) |
|
5.3.3 Titanium Monoxide Structure |
|
|
202 | (3) |
|
|
205 | (10) |
|
|
207 | (4) |
|
5.4.2 Planar Intergrowths |
|
|
211 | (1) |
|
|
212 | (2) |
|
|
214 | (1) |
|
5.4.5 Infinitely Adaptive Structures |
|
|
215 | (1) |
|
5.5 Electronic Properties of Nonstoichiometric Oxides |
|
|
215 | (5) |
|
|
220 | (1) |
|
|
221 | (4) |
|
Chapter 6 Solid-State Materials For Batteries |
|
|
225 | (22) |
|
|
225 | (3) |
|
6.2 Ionic Conductivity in Solids |
|
|
228 | (5) |
|
|
233 | (8) |
|
6.3.1 Silver Ion Conductors |
|
|
233 | (4) |
|
6.3.2 Lithium Ion Conductors |
|
|
237 | (2) |
|
6.3.3 Sodium Ion Conductors |
|
|
239 | (2) |
|
6.4 Lithium-Based Batteries |
|
|
241 | (3) |
|
6.5 Sodium-Based Batteries |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
245 | (2) |
|
Chapter 7 Microporous And Mesoporous Solids |
|
|
247 | (36) |
|
|
247 | (1) |
|
|
247 | (21) |
|
|
248 | (4) |
|
7.2.2 Composition and Structure of Zeolites |
|
|
252 | (3) |
|
7.2.3 Zeolite Nomenclature |
|
|
255 | (1) |
|
7.2.4 Si/Al Ratios in Zeolites |
|
|
256 | (1) |
|
7.2.5 Exchangeable Cations |
|
|
256 | (1) |
|
7.2.6 Channels and Cavities |
|
|
257 | (4) |
|
7.2.7 Synthesis of Zeolites |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (5) |
|
7.3 Metal Organic Frameworks |
|
|
268 | (7) |
|
7.3.1 Composition and Structure of MOFs |
|
|
268 | (1) |
|
|
268 | (5) |
|
|
273 | (1) |
|
7.3.3.1 Storage and Separation |
|
|
273 | (1) |
|
7.3.3.2 Heterogeneous Catalysis |
|
|
274 | (1) |
|
7.3.3.3 Other Applications |
|
|
275 | (1) |
|
|
275 | (1) |
|
7.4 Covalent Organic Frameworks |
|
|
275 | (2) |
|
|
276 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (3) |
|
7.5.1 Mesoporous Aluminosilicates |
|
|
277 | (1) |
|
|
278 | (1) |
|
7.5.3 Periodic Mesoporous Organosilicas |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (3) |
|
Chapter 8 Optical Properties Of Solids |
|
|
283 | (32) |
|
|
283 | (1) |
|
8.2 Interaction of Light with Atoms |
|
|
284 | (5) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
289 | (2) |
|
8.4 Absorption and Emission of Radiation in Continuous Solids |
|
|
291 | (7) |
|
8.4.1 Gallium Arsenide Laser |
|
|
294 | (1) |
|
8.4.2 Quantum Wells: Blue Lasers |
|
|
295 | (1) |
|
8.4.3 Light-Emitting Diodes |
|
|
296 | (1) |
|
8.4.4 Photovoltaic (Solar) Cells |
|
|
297 | (1) |
|
8.5 Carbon-Based Conducting Polymers |
|
|
298 | (5) |
|
8.5.1 Discovery of Polyacetylene |
|
|
298 | (2) |
|
8.5.2 Bonding in Polyacetylene and Related Polymers |
|
|
300 | (2) |
|
8.5.3 Organic LEDs and Photovoltaic Cells |
|
|
302 | (1) |
|
|
303 | (4) |
|
|
304 | (2) |
|
|
306 | (1) |
|
|
307 | (3) |
|
|
310 | (2) |
|
|
312 | (1) |
|
|
313 | (2) |
|
Chapter 9 Magnetic And Electrical Properties |
|
|
315 | (32) |
|
|
315 | (1) |
|
9.2 Magnetic Susceptibility |
|
|
315 | (2) |
|
9.3 Paramagnetism in Metal Complexes |
|
|
317 | (3) |
|
|
320 | (6) |
|
9.4.1 Ferromagnetic Domains |
|
|
323 | (2) |
|
|
325 | (1) |
|
|
326 | (1) |
|
9.5 Ferromagnetic Compounds: Chromium Dioxide |
|
|
326 | (1) |
|
9.6 Antiferromagnetism: Transition Metal Monoxides |
|
|
327 | (2) |
|
9.7 Ferrimagnetism: Ferrites |
|
|
329 | (2) |
|
9.7.1 Magnetic Strips on Swipe Cards |
|
|
330 | (1) |
|
|
331 | (1) |
|
9.9 Giant, Tunnelling, and Colossal Magnetoresistance |
|
|
332 | (4) |
|
9.9.1 Giant Magnetoresistance |
|
|
332 | (1) |
|
9.9.2 Tunnelling Magnetoresistance |
|
|
333 | (1) |
|
9.9.3 Hard-Disk Read Heads |
|
|
334 | (1) |
|
9.9.4 Colossal Magnetoresistance: Manganites |
|
|
335 | (1) |
|
9.10 Electrical Polarisation |
|
|
336 | (1) |
|
9.11 Piezoelectric Crystals: A-Quartz |
|
|
337 | (1) |
|
9.12 Ferroelectric Effect |
|
|
338 | (4) |
|
9.12.1 Multilayer Ceramic Capacitors |
|
|
341 | (1) |
|
|
342 | (3) |
|
9.13.1 Type I Multiferroics: Bismuth Ferrite |
|
|
343 | (1) |
|
9.13.2 Type II Multiferroics: Terbium Manganite |
|
|
343 | (2) |
|
|
345 | (1) |
|
|
346 | (1) |
|
Chapter 10 Superconductivity |
|
|
347 | (16) |
|
|
347 | (2) |
|
10.2 Properties of Superconductors |
|
|
349 | (4) |
|
10.2.1 Electrical Conductivity |
|
|
349 | (1) |
|
10.2.2 Magnetic Properties of Superconductors |
|
|
349 | (2) |
|
10.2.3 BCS Theory of Superconductivity |
|
|
351 | (2) |
|
10.3 High-Temperature Superconductors |
|
|
353 | (8) |
|
10.3.1 Cuprate Superconductors |
|
|
354 | (4) |
|
10.3.2 Iron Superconductors |
|
|
358 | (1) |
|
10.3.3 Theory of High-Tc Superconductors |
|
|
359 | (2) |
|
10.4 Uses of High-Temperature Superconductors |
|
|
361 | (1) |
|
|
361 | (1) |
|
|
362 | (1) |
|
Chapter 11 Nanostructures |
|
|
363 | (28) |
|
|
363 | (1) |
|
11.2 Consequences of the Nanoscale |
|
|
363 | (10) |
|
11.2.1 Nanoparticle Morphology |
|
|
363 | (1) |
|
11.2.2 Electronic Structure |
|
|
364 | (3) |
|
11.2.3 Optical Properties |
|
|
367 | (3) |
|
11.2.4 Magnetic Properties |
|
|
370 | (2) |
|
11.2.5 Mechanical Properties |
|
|
372 | (1) |
|
11.2.6 Melting Temperature |
|
|
372 | (1) |
|
11.3 Nanostructural Carbon |
|
|
373 | (7) |
|
|
373 | (1) |
|
|
373 | (1) |
|
11.3.3 Intercalation Compounds of Graphite |
|
|
374 | (1) |
|
|
375 | (2) |
|
|
377 | (1) |
|
11.3.6 Buckminsterfullerene |
|
|
377 | (2) |
|
|
379 | (1) |
|
11.4 Noncarbon Nanoparticles |
|
|
380 | (3) |
|
|
381 | (1) |
|
|
381 | (1) |
|
11.4.3 Metal Nanoparticles |
|
|
382 | (1) |
|
11.5 Other Noncarbon Nanostructures |
|
|
383 | (1) |
|
11.6 Synthesis of Nanomaterials |
|
|
383 | (5) |
|
|
384 | (1) |
|
11.6.2 Bottom-Up Methods: Manipulating Atoms and Molecules |
|
|
384 | (3) |
|
11.6.3 Synthesis Using Templates |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
390 | (1) |
|
Chapter 12 Sustainability |
|
|
391 | (12) |
|
|
|
391 | (5) |
|
12.1.1 Definition of Materials Sustainability |
|
|
391 | (1) |
|
12.1.2 Sustainable Materials Chemistry Goals |
|
|
391 | (1) |
|
12.1.3 Materials Dependence in Society |
|
|
392 | (1) |
|
12.1.4 Elemental Abundances |
|
|
392 | (3) |
|
12.1.5 Solid-State Chemistry's Role in Sustainability |
|
|
395 | (1) |
|
12.1.6 Material Life Cycle |
|
|
395 | (1) |
|
12.2 Tools for Sustainable Approaches |
|
|
396 | (5) |
|
|
396 | (1) |
|
12.2.2 Herfindahl--Hirschman Index (HHI) |
|
|
396 | (2) |
|
|
398 | (1) |
|
|
399 | (1) |
|
12.2.5 Life Cycle Assessment |
|
|
400 | (1) |
|
12.3 Case Study: Sustainability of a Smartphone |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
Answers to Questions |
|
403 | (24) |
Further Reading |
|
427 | (4) |
Index |
|
431 | |