Atjaunināt sīkdatņu piekrišanu

E-grāmata: Solid-State Properties of Pharmaceutical Materials

(Purdue University), (University of Wisconsin-Madison), (Antares Pharma Inc.)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-Jul-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119264453
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 192,67 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-Jul-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119264453
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Presents a detailed discussion of important solid-state properties, methods, and applications of solid-state analysis



Illustrates the various phases or forms that solids can assume and discussesvarious issues related to the relative stability of solid forms and tendencies to undergo transformation Covers key methods of solid state analysis including X-ray powder diffraction, thermal analysis, microscopy, spectroscopy, and solid state NMR Reviews critical physical attributes of pharmaceutical materials, mainly related to drug substances, including particle size/surface area, hygroscopicity, mechanical properties, solubility, and physical and chemical stability Showcases the application of solid state material science in rational selection of drug solid forms, analysis of various solid forms within drug substance and the drug product, and pharmaceutical product development Introduces appropriate manufacturing and control procedures using Quality by Design, and other strategies that lead to safe and effective products with a minimum of resources and time
Preface xi
Acknowledgments xiii
1 Solid-State Properties and Pharmaceutical Development 1(21)
1.1 Introduction
1(1)
1.2 Solid-State Forms
1(5)
1.3 ICH Q6A Decision Trees
6(1)
1.4 "Big Questions" for Drug Development
6(3)
1.5 Accelerating Drug Development
9(2)
1.6 Solid-State Chemistry in Preformulation and Formulation
11(3)
1.7 Learning Before Doing and Quality by Design
14(3)
1.8 Performance and Stability in Pharmaceutical Development
17(1)
1.9 Moisture Uptake
18(1)
1.10 Solid-State Reactions
19(1)
1.11 Noninteracting Formulations: Physical Characterizations
19(1)
References
20(2)
2 Polymorphs 22(16)
2.1 Introduction
22(1)
2.2 How are Polymorphs Formed?
22(1)
2.3 Structural Aspect of Polymorphs
23(1)
2.4 Physical, Chemical, and Mechanical Properties
24(3)
2.5 Thermodynamic Stability of Polymorphs
27(5)
2.6 Polymorph Conversion
32(2)
2.7 Control of Polymorphs
34(1)
2.8 Polymorph Screening
35(1)
2.9 Polymorph Prediction
36(1)
References
36(2)
3 Solvates and Hydrates 38(10)
3.1 Introduction
38(1)
3.2 Pharmaceutical Importance of Hydrates
38(2)
3.3 Classification of Pharmaceutical Hydrates
40(2)
3.4 Water Activity
42(1)
3.5 Stoichiometric Hydrates
43(1)
3.6 Nonstoichiometric Hydrates
44(1)
3.7 Hydration/Dehydration
45(1)
3.8 Preparation and Characterization of Hydrates and Solvates
45(1)
References
46(2)
4 Pharmaceutical Salts 48(12)
4.1 Introduction
48(1)
4.2 Importance of Pharmaceutical Salts
48(1)
4.3 Weak Acid, Weak Base, and Salt
49(2)
4.4 pH-Solubility Profiles of Ionizable Compounds
51(2)
4.5 Solubility, Dissolution, and Bioavailability of Pharmaceutical Salts
53(3)
4.6 Physical Stability of Pharmaceutical Salts
56(1)
4.7 Strategies for Salt Selection
57(2)
References
59(1)
5 Pharmaceutical Cocrystals 60(9)
5.1 Introduction
60(1)
5.2 Cocrystals and Crystal Engineering
60(2)
5.3 Solubility Phase Diagrams for Cocrystals
62(1)
5.4 Preparation of Cocrystals
63(1)
5.5 Dissolution and Bioavailability of Cocrystals
64(2)
5.6 Comparison of Pharmaceutical Salts and Cocrystals
66(2)
References
68(1)
6 Amorphous Solids 69(20)
6.1 Introduction
69(1)
6.2 The Formation of Amorphous Solids
70(1)
6.3 Methods of Preparing Amorphous Solids
71(1)
6.4 The Glass Transition Temperature
72(3)
6.5 Structural Features of Amorphous Solids
75(2)
6.6 Molecular Mobility
77(7)
6.7 Mixtures of Amorphous Solids
84(3)
References
87(2)
7 Crystal Mesophases and Nanocrystals 89(10)
7.1 Introduction
89(1)
7.2 Overview of Crystal Mesophases
89(1)
7.3 Liquid Crystals
90(5)
7.4 Conformationally Disordered (Condis) Crystals
95(1)
7.5 Plastic Crystals
95(1)
7.6 Nanocrystals
96(1)
References
97(2)
8 X-Ray Crystallography and Crystal Packing Analysis 99(8)
8.1 Introduction
99(1)
8.2 Crystals
99(1)
8.3 Miller Indices and Crystal Faces
99(2)
8.4 Determination of the Miller Indices of the Faces of a Crystal
101(2)
8.5 Determination of Crystal Structure
103(3)
References
106(1)
9 X-Ray Powder Diffraction 107(17)
9.1 Introduction
107(1)
9.2 X-Ray Powder Diffraction of Crystalline Materials
107(2)
9.3 Qualitative Analysis of Crystalline Materials
109(1)
9.4 Phase Transformations
110(1)
9.5 Quantitative Phase Analysis Using XRPD
111(3)
9.6 Solving Crystal Structures Using Powder X-Ray Diffraction
114(2)
9.7 X-Ray Diffraction of Amorphous and Crystal Mesophase Forms
116(1)
9.8 Pair Distribution Function
117(2)
9.9 X-Ray Diffractometers
119(2)
9.10 Variable Temperature XRPD
121(1)
References
122(2)
10 Differential Scanning Calorimetry and Thermogravimetric Analysis 124(18)
10.1 Introduction
124(1)
10.2 The Basics of Differential Scanning Calorimetry
124(1)
10.3 Thermal Transitions of Pharmaceutical Materials
125(3)
10.4 DSC Instrumentation
128(4)
10.5 Thermogravimetric Analysis
132(1)
10.6 Operating a TGA Instrument
133(1)
10.7 Evolved Gas Analysis
133(1)
10.8 Applications of DSC and TGA
134(5)
10.9 Summary of Using DSC and TGA
139(1)
References
140(2)
11 Microscopy 142(17)
11.1 Introduction
142(1)
11.2 Light Microscopy
142(2)
11.3 Polarized Light Microscopy
144(1)
11.4 Thermal Microscopy
144(1)
11.5 Functionality of the Light Microscope
145(1)
11.6 Digital Microscope
146(1)
11.7 Application of Light Microscopy to Pharmaceutical Materials
146(7)
11.8 Scanning Electron Microscope
153(2)
11.9 Environmental Scanning Electron Microscopy
155(1)
11.10 Atomic Force Microscopy
155(2)
References
157(2)
12 Vibrational Spectroscopy 159(21)
12.1 Introduction
159(1)
12.2 The Nature of Molecular Vibrations
160(1)
12.3 Fourier Transformed Infrared Spectroscopy
161(1)
12.4 Material Characterization by FT-IR Spectroscopy
162(2)
12.5 FT-IR Instrumentation
164(1)
12.6 Diffuse Reflectance FT-IR
165(1)
12.7 Attenuated Total Reflectance FT-IR
166(1)
12.8 FT-IR Microscopy
167(1)
12.9 Near Infrared Spectroscopy
168(2)
12.10 Raman Spectroscopy
170(1)
12.11 Raman Instrumentation and Sampling
171(2)
12.12 Raman Microscope
173(2)
12.13 Terahertz Spectroscopy
175(1)
12.14 Comparison of FT-IR, NIR, Raman, and Terahertz Spectroscopy
176(2)
References
178(2)
13 Solid-State NMR Spectroscopy 180(17)
13.1 Introduction
180(1)
13.2 An Overview of Solid-State 13C CP/MAS NMR Spectroscopy
180(5)
13.3 Solid-State NMR Studies of Pharmaceuticals
185(1)
13.4 Phase Identification in Dosage Forms
186(3)
13.5 Other Basic Solid-State NMR Experiments Useful for Pharmaceutical Analysis
189(3)
13.6 Determination of the Domain Structure of Amorphous Dispersions Using Solid-State NMR
192(4)
References
196(1)
14 Particle and Powder Analysis 197(16)
14.1 Introduction
197(1)
14.2 Particles in Pharmaceutical Systems
197(2)
14.3 Particle Size and Shape
199(1)
14.4 Particle Size Distribution
200(2)
14.5 Dynamic Light Scattering
202(1)
14.6 Zeta Potential
203(2)
14.7 Laser Diffraction
205(1)
14.8 Dynamic Image Analysis
206(2)
14.9 Sieve Analysis
208(1)
14.10 Bulk Properties of Pharmaceutical Particulates and Powders
208(1)
14.11 Surface Area Measurement
209(2)
References
211(2)
15 Hygroscopic Properties of Solids 213(18)
15.1 Introduction
213(1)
15.2 Water Vapor Sorption-Desorption
214(1)
15.3 Water Vapor Sorption Isotherms, Relative Humidity, and Water Activity
214(2)
15.4 Measurement of Water Content and Water Vapor Sorption/Desorption Isotherms
216(2)
15.5 Modes of Water Vapor Sorption
218(11)
References
229(2)
16 Mechanical Properties of Pharmaceutical Materials 231(18)
16.1 Introduction
231(1)
16.2 Stress and Strain
231(1)
16.3 Elasticity
232(1)
16.4 Plasticity
233(1)
16.5 Viscoelasticity
234(1)
16.6 Brittleness
235(1)
16.7 Hardness
236(1)
16.8 Powder Compression
237(1)
16.9 Powder Compression Models and Compressibility
238(1)
16.10 Compactibility and Tensile Strength
239(1)
16.11 Effect of Solid Form on Mechanical Properties
239(3)
16.12 Effect of Moisture on Mechanical Properties
242(1)
16.13 Methods for Testing Mechanical Properties: Beam Bending
243(3)
16.14 Nanoindentation
246(1)
References
247(2)
17 Solubility and Dissolution 249(16)
17.1 Introduction
249(1)
17.2 Principle Concepts Associated with Solubility
249(1)
17.3 Prediction of Aqueous Drug Solubility
250(2)
17.4 Solubility of Pharmaceutical Solid Forms
252(1)
17.5 Solubility Determination Using the Shake Flask Method
253(1)
l7.6 High Throughput Screening of Solubility
254(1)
17.7 Solubility Measurement of Metastable Forms
255(1)
17.8 Kinetic Solubility Measurement
256(1)
17.9 Solubility Determination of Drugs in Polymer Matrices
256(1)
17.10 Dissolution Testing
257(3)
17.11 Nonsink Dissolution Test
260(2)
17.12 Intrinsic Dissolution Studies
262(1)
References
263(2)
18 Physical Stability of Solids 265(14)
18.1 Introduction
265(1)
18.2 Underlying Basis for Physical Instability in Pharmaceutical Systems
266(1)
18.3 Disorder in Crystals
267(7)
18.4 Examples of the Role of Process-Induced Disorder in Solid-State Physical Instability in Pharmaceutical Systems
274(2)
18.5 Considerations in Evaluating Solid-State Physical Stability
276(1)
References
277(2)
19 Chemical Stability of Solids 279(23)
19.1 Introduction
279(1)
19.2 Examples of Chemical Reactivity in the Solid State
279(3)
19.3 Some General Principles that Establish the Rate of Chemical Reactions in Solution
282(4)
19.4 The Role of Crystal Defects in Solid-State Reactions
286(4)
19.5 Chemical Reactivity in the Amorphous Solid State
290(2)
19.6 Chemical Reactivity and Processed-Induced Disorder
292(2)
19.7 The Effects of Residual Water on Solid-State Chemical Reactivity
294(4)
19.8 Drug-Excipient Interactions
298(2)
19.9 Summary
300(1)
References
300(2)
20 Solid-State Properties of Proteins 302(11)
20.1 Introduction
302(1)
20.2 Solution Properties of Proteins
302(4)
20.3 Amorphous Properties of Proteins
306(1)
20.4 Crystalline Properties of Proteins
307(1)
20.5 Local Molecular Motions and the Dynamical Transitional Temperature, Td
308(2)
20.6 Solid-State Physical and Chemical Stability of Proteins
310(1)
20.7 Cryoprotection and Lyoprotection
311(1)
References
311(2)
21 Form Selection of Active Pharmaceutical Ingredients 313(18)
21.1 Introduction
313(1)
21.2 Form Selection
313(2)
21.3 Amorphous form Screening
315(1)
21.4 Salt Selection
316(2)
21.5 Cocrystal Screening
318(2)
21.6 Polymorph Screening
320(1)
21.7 Slurrying
321(1)
21.8 High Throughput Screening
322(1)
21.9 Crystallization in Confined Space
323(2)
21.10 Nonsolvent-Based Polymorph Screening
325(1)
21.11 Polymer-Induced Heteronucleation
325(1)
21.12 Physical Characterization
326(1)
21.13 Thermodynamic Stability and form Selection
327(1)
References
328(3)
22 Mixture Analysis 331(20)
22.1 Introduction
331(1)
22.2 Limitations of Wet Chemistry
331(1)
22.3 Pharmaceutical Analysis in the Solid State
332(3)
22.4 Measurement of Amorphous Content
335(2)
22.5 Detection of the Degree of Crystallinity
337(2)
22.6 Quantification of Mixtures of Polymorphs
339(1)
22.7 Salt and Free form Composition
340(2)
22.8 Process Analytical Technology
342(6)
References
348(3)
23 Product Development 351(24)
23.1 Chemistry, Manufacture, and Control
351(2)
23.2 Preformulation
353(1)
23.3 Drug Excipient Compatibility
354(1)
23.4 Solid Dispersions
355(6)
23.5 Abuse-Deterrent Dosage Forms
361(2)
23.6 Drug-Eluting Stents
363(2)
23.7 Dry Powder Inhalers (DPI)
365(3)
23.8 Lyophilization and Biopharmaceutical Products
368(4)
References
372(3)
24 Quality by Design 375(14)
24.1 Introduction
375(1)
24.2 Quality by Design Wheel
375(4)
24.3 Learning Before Doing
379(1)
24.4 Risk-Based Orientation
380(1)
24.5 API Attributes and Process Design
381(1)
24.6 Development and Design Space
381(4)
24.7 Process Design: Crystallization
385(1)
24.8 Phase Transformations During Wet Granulation
386(1)
24.9 Dissolution Tests with an IVIVC for Quality by Design
387(1)
24.10 Conclusion
388(1)
References
388(1)
Index 389
Stephen R. Byrn, PhD is Charles B. Jordan Professor of Medicinal Chemistry in the School of Pharmacy, Purdue University. Dr. Byrn has founded and directed several programs at Purdue University including CAMP, the Center for AIDS Research, the Molecules to Market program, and Purdue's graduate programs in regulatory and quality compliance. Dr. Byrn has served as chair of the Pharmaceutical Sciences Advisory Committee to the FDA and Chair of the Drug Substances Technical Committee, Product Quality Research Initiative. Dr. Byrn is co-founder of SSCI, Inc. a cGMP research and information Company.



George Zografi, PhD is the Edward Kremers Professor Emeritus of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison. He was the recipient of the APhA Ebert Prize in 1984 and 2001, the AAPS Dale E. Wurster Award for Pharmaceutics in 1990 and its Distinguished Scientist Award in 1995, as well as the Volwiler Research Achievement Award of the American Association of Colleges of Pharmacy.

Xiaoming (Sean) Chen, PhD is currently the Director of Formulation Development in Antares Pharma Inc. Prior to that, he held various positions in pharmaceutical product development at Schering-Plough, OSI Pharmaceuticals, Astellas Pharma, and Shionogi Inc. He has published over a dozen of papers in peer-reviewed journals and is a co-inventor of four US patents.