Preface |
|
vii | |
|
Conjugacy Classes, Characters, and Clifford Theory |
|
|
1 | (18) |
|
Class Functions and Characters |
|
|
1 | (2) |
|
Induced and Tensor-induced Modules |
|
|
3 | (1) |
|
|
4 | (2) |
|
Brauer's Permutation Lemma |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
Invariant and Good Conjugacy Classes |
|
|
10 | (2) |
|
Nonstable Clifford Theory |
|
|
12 | (1) |
|
|
13 | (5) |
|
Good Conjugacy Classes and Extendible Characters |
|
|
18 | (1) |
|
Blocks of Characters and Brauer's k(B) Problem |
|
|
19 | (13) |
|
Modular Decomposition and Brauer Characters |
|
|
19 | (2) |
|
Cartan Invariants and Blocks |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (1) |
|
Higher Decomposition Numbers, Subsections |
|
|
26 | (2) |
|
Blocks of p-Solvable Groups |
|
|
28 | (3) |
|
|
31 | (1) |
|
|
32 | (13) |
|
|
32 | (2) |
|
|
34 | (2) |
|
Subsections and Point Stabilizers |
|
|
36 | (5) |
|
Abelian Point Stabilizers |
|
|
41 | (4) |
|
Symplectic and Orthogonal Modules |
|
|
45 | (18) |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (5) |
|
Good Conjugacy Classes Once Again |
|
|
54 | (2) |
|
|
56 | (4) |
|
Symplectic and Orthogonal Modules |
|
|
60 | (3) |
|
|
63 | (19) |
|
Regular, Abelian and Real Vectors |
|
|
63 | (3) |
|
The Robinson--Thompson Theorem |
|
|
66 | (2) |
|
|
68 | (3) |
|
|
71 | (3) |
|
|
74 | (1) |
|
|
74 | (3) |
|
|
77 | (5) |
|
Reduced Pairs of Extraspecial Type |
|
|
82 | (28) |
|
|
82 | (2) |
|
|
84 | (2) |
|
Point Stabilizers of Exponent 2 |
|
|
86 | (4) |
|
|
90 | (2) |
|
|
92 | (4) |
|
Extraspecial 2-Groups of Small Order |
|
|
96 | (7) |
|
|
103 | (7) |
|
Reduced Pairs of Quasisimple Type |
|
|
110 | (38) |
|
|
110 | (2) |
|
|
112 | (3) |
|
Covering Numbers, Projective Marks |
|
|
115 | (4) |
|
|
119 | (2) |
|
|
121 | (4) |
|
|
125 | (4) |
|
|
129 | (7) |
|
|
136 | (9) |
|
|
145 | (2) |
|
|
147 | (1) |
|
Modules without Real Vectors |
|
|
148 | (22) |
|
|
148 | (1) |
|
Tensor Induction of Reduced Pairs |
|
|
149 | (6) |
|
Tensor Products of Reduced Pairs |
|
|
155 | (1) |
|
The Riese--Schmid Theorem |
|
|
156 | (4) |
|
Nonreal Induced Pairs, Wreath Products |
|
|
160 | (10) |
|
Class Numbers of Permutation Groups |
|
|
170 | (10) |
|
|
170 | (1) |
|
|
171 | (1) |
|
The Liebeck-Pyber Theorem |
|
|
172 | (2) |
|
|
174 | (6) |
|
The Final Stages of the Proof |
|
|
180 | (15) |
|
Class Numbers for Nonreal Reduced Pairs |
|
|
180 | (2) |
|
Counting Invariant Conjugacy Classes |
|
|
182 | (3) |
|
|
185 | (1) |
|
|
186 | (8) |
|
|
194 | (1) |
|
Possibilities for k(GV) = |V| |
|
|
195 | (7) |
|
|
195 | (2) |
|
|
197 | (2) |
|
|
199 | (3) |
|
Some Consequences for Block Theory |
|
|
202 | (7) |
|
|
202 | (1) |
|
Clifford Theory of Blocks |
|
|
203 | (4) |
|
Blocks with Normal Defect Groups |
|
|
207 | (2) |
|
The Non-Coprime Situation |
|
|
209 | (4) |
Appendix A: Cohomology of Finite Groups |
|
213 | (4) |
Appendix B: Some Parabolic Subgroups |
|
217 | (4) |
Appendix C: Weil Characters |
|
221 | (4) |
Bibliography |
|
225 | (5) |
List of Symbols |
|
230 | (1) |
Index |
|
231 | |